Identification of m6A-related lncRNAs LINC02471 and DOCK9-DT as potential biomarkers for thyroid cancer

甲状腺癌 肿瘤科 医学 比例危险模型 恶性肿瘤 癌症 内科学 甲状腺 疾病 生物信息学 计算生物学 生物
作者
Dengwang Chen,Hongyuan Zhao,Zhanwen Guo,Zixuan Dong,Yuanning Yu,Jishan Zheng,Yunyan Ma,Hongqin Sun,Qian Zhang,Jidong Zhang,Yuqi He,Tao Song
出处
期刊:International Immunopharmacology [Elsevier BV]
卷期号:133: 112050-112050 被引量:1
标识
DOI:10.1016/j.intimp.2024.112050
摘要

Thyroid cancer (THCA) is the most common endocrine malignancy worldwide and has been rising at the fastest rate in recent years. Long-stranded non-coding RNAs (lncRNAs) and N6-methyladenosine (m6A) have been associated with immunotherapy efficacy and cancer prognosis. However, how m6A-associated lncRNAs (mrlncRNAs) affect the prognosis of patients with thyroid cancer is unclear. Therefore, this study utilized The Cancer Genome Atlas (TCGA) database to provide thyroid cancer-related transcriptomic data and related clinical data. The R program was used to identify m6A-related lncRNAs, and a risk model consisting of two lncRNAs (LINC02471 and DOCK9-DT) was obtained using least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Kaplan-Meier survival analysis and transient subject operating characteristics (ROC) were used for analysis. The results showed a substantial association between immune cell infiltration and risk scores. Independent analyses confirmed that the expression of LINC02471 and DOCK9-DT was significantly higher in thyroid cancer tissues than in normal tissues, suggesting that they may be useful biomarkers for thyroid cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
215858687发布了新的文献求助10
1秒前
研友_LBKR9n完成签到,获得积分10
1秒前
LI完成签到 ,获得积分10
1秒前
卖萌的秋田完成签到,获得积分10
2秒前
2秒前
2秒前
迅速天空完成签到 ,获得积分10
2秒前
陈艺鹏完成签到,获得积分10
2秒前
脑洞疼应助一颗馒头采纳,获得10
4秒前
Wv完成签到,获得积分10
4秒前
cookie发布了新的文献求助10
4秒前
醉熏的小松鼠完成签到,获得积分10
4秒前
小邢一定行完成签到,获得积分10
4秒前
长风完成签到,获得积分10
4秒前
Slence完成签到,获得积分10
6秒前
斯文败类应助silin采纳,获得10
6秒前
6秒前
李伟峰发布了新的文献求助10
7秒前
8秒前
柯续缘发布了新的文献求助10
8秒前
Mori完成签到,获得积分10
8秒前
求知完成签到,获得积分20
9秒前
Bryn_Wang完成签到,获得积分10
10秒前
微笑正豪完成签到,获得积分10
10秒前
11秒前
852应助好运常在采纳,获得10
11秒前
丁丁发布了新的文献求助10
11秒前
隐形曼青应助Mori采纳,获得10
11秒前
Chiuchiu完成签到,获得积分10
12秒前
Adler完成签到,获得积分10
12秒前
坡坡大王完成签到,获得积分10
13秒前
xhs12138完成签到,获得积分10
13秒前
13秒前
limit完成签到,获得积分20
13秒前
曼曼完成签到,获得积分10
14秒前
zer0完成签到,获得积分10
14秒前
DJ完成签到,获得积分10
14秒前
英俊延恶发布了新的文献求助10
14秒前
NICKPLZ完成签到,获得积分10
15秒前
大模型应助鲜于枫采纳,获得10
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Handbook of Medicinal Chemistry: Principles and Practice 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834076
求助须知:如何正确求助?哪些是违规求助? 3376485
关于积分的说明 10493557
捐赠科研通 3095982
什么是DOI,文献DOI怎么找? 1704818
邀请新用户注册赠送积分活动 820115
科研通“疑难数据库(出版商)”最低求助积分说明 771868