Exploration of a noninvasive radiomics classifier for breast cancer tumor microenvironment categorization and prognostic outcome prediction

无线电技术 医学 乳腺癌 肿瘤微环境 分类器(UML) 磁共振成像 总体生存率 机器学习 随机森林 肿瘤科 癌症 放射科 内科学 人工智能 计算机科学
作者
Xiaorui Han,Zhengze Gong,Yuan Guo,Wenjie Tang,Xinhua Wei
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:175: 111441-111441 被引量:2
标识
DOI:10.1016/j.ejrad.2024.111441
摘要

Rationale and Objectives: Breast cancer progression and treatment response are significantly influenced by the tumor microenvironment (TME). Traditional methods for assessing TME are invasive, posing a challenge for patient care. This study introduces a non-invasive approach to TME classification by integrating radiomics and machine learning, aiming to predict the TME status using imaging data, thereby aiding in prognostic outcome prediction. Materials and Methods Utilizing multi-omics data from The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA), this study employed CIBERSORT and MCP-counter algorithms analyze immune infiltration in breast cancer. A radiomics classifier was developed using a random forest algorithm, leveraging quantitative features extracted from intratumoral and peritumoral regions of Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) scans. The classifer's ability to predict diverse TME states were and their prognostic implications were evaluated using Kaplan-Meier survival curves. Results Three distinct TME states were identified using RNA-Seq data, each displaying unique prognostic and biological characteristics. Notably, patients with increased immune cell infiltration showed significantly improved prognoses (P < 0.05). The classifier, comprising 24 radiomic features, demonstrated high predictive accuracy (AUC of training set = 0.960, 95 % CI: 0.922, 0.997; AUC of testing set = 0.853, 95 % CI: 0.687, 1.000) in differentiating these TME states. Predictions from the classifier also correlated significantly with overall patient survival (P < 0.05). Conclusion This study offers a detailed analysis of the complex TME states in breast cancer and presents a reliable, noninvasive radiomics classifier for TME assessment. The classifer's accurate prediction of TME status and its correlation with prognosis highlight its potential as a tool in personalized breast cancer treatment, paving the way for more individualized and less invasive therapeutic strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助chrysan采纳,获得10
刚刚
丘比特应助称心的祥采纳,获得10
1秒前
HEAUBOOK应助金木木采纳,获得20
1秒前
传奇3应助夢loey采纳,获得10
4秒前
阎万怨发布了新的文献求助10
10秒前
知否完成签到 ,获得积分0
11秒前
chenu完成签到 ,获得积分10
12秒前
上官若男应助la采纳,获得10
19秒前
梅者如西发布了新的文献求助10
19秒前
科研通AI2S应助谢富杰采纳,获得10
25秒前
今其完成签到,获得积分10
27秒前
wen完成签到,获得积分10
28秒前
马德里就思议完成签到,获得积分10
29秒前
30秒前
30秒前
gjgy完成签到,获得积分10
30秒前
汉堡包应助哈哈采纳,获得30
31秒前
32秒前
和谐的问丝完成签到,获得积分10
33秒前
瘦瘦的一江完成签到 ,获得积分10
34秒前
la发布了新的文献求助10
34秒前
丧彪完成签到,获得积分10
35秒前
梅者如西完成签到,获得积分10
36秒前
gjgy发布了新的文献求助10
36秒前
故意的睫毛膏完成签到 ,获得积分10
37秒前
张磊完成签到,获得积分10
37秒前
ZYQ完成签到 ,获得积分10
39秒前
chrysan发布了新的文献求助10
39秒前
潼潼完成签到 ,获得积分10
40秒前
ln完成签到 ,获得积分10
42秒前
潇潇雨歇发布了新的文献求助10
45秒前
鸭梨很大完成签到 ,获得积分10
48秒前
专注的友易完成签到,获得积分20
53秒前
53秒前
共享精神应助科研通管家采纳,获得10
53秒前
53秒前
Owen应助科研通管家采纳,获得10
53秒前
科研通AI5应助科研通管家采纳,获得10
53秒前
科研通AI5应助科研通管家采纳,获得10
53秒前
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777911
求助须知:如何正确求助?哪些是违规求助? 3323444
关于积分的说明 10214462
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758304