半导体
光电子学
计算机科学
逻辑门
非易失性存储器
材料科学
半导体存储器
电子工程
工程类
计算机硬件
作者
Shuhan Liu,Koustav Jana,Kasidit Toprasertpong,Jian Chen,Zheng Liang,Qi Jiang,Sumaiya Wahid,Shengjun Qin,Wei-Chen Chen,Eric Pop,H.‐S. Philip Wong
标识
DOI:10.1109/ted.2024.3372938
摘要
We offer design guidelines with a top–down and bottom–up design approach for oxide semiconductor (OS) transistors, optimized for gain cell memory on a logic platform. With high-density, high-bandwidth on-chip gain cell memory, deep neural network (DNN) accelerator execution times can be shortened by 51–66%, by minimizing access to off-chip dynamic random access memory (DRAM). To balance retention time with memory bandwidth (top–down), atomic layer deposition (ALD) indium tin oxide (ITO) transistors are chosen (bottom–up). The experimentally optimized device exhibits low off-state current (2 $\times$ 10 $^{-\text{18}}$ A/ $\mu$ m at $\textit{V}_{\text{GS}}$ $=$ $-$ 0.5 V), good on-state current (26.8 $\mu$ A/ $\mu$ m for power supply $<$ 2 V), low subthreshold swing (SS) (70 mV/dec), and good mobility (27 cm $^{\text{2}}$ V $^{-\text{1}}$ s $^{-\text{1}}$ ). Using this optimized device, a gain cell memory macro with 64 rows ( WL ) $\times$ 256 columns ( BL ) is simulated at the 28 nm node operating at $\textit{V}_{\text{DD}}$ $=$ 0.9 V. The simulation results show that hybrid OS-Si gain cell memory achieves 0.98 $\times$ frequency and 3 $\times$ density of static random access memory (SRAM), and the OS-OS gain cell memory is projected to operate at 0.5 $\times$ frequency with N times 1.15 $\times$ density of SRAM with N -layer of 3-D stacking.
科研通智能强力驱动
Strongly Powered by AbleSci AI