Fine-Grained Recognition With Learnable Semantic Data Augmentation

计算机科学 人工智能 模式识别(心理学) 自然语言处理 计算机视觉
作者
Yifan Pu,Yizeng Han,Yulin Wang,Junlan Feng,Chao Deng,Gao Huang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3130-3144 被引量:12
标识
DOI:10.1109/tip.2024.3364500
摘要

Fine-grained image recognition is a longstanding computer vision challenge that focuses on differentiating objects belonging to multiple subordinate categories within the same meta-category. Since images belonging to the same meta-category usually share similar visual appearances, mining discriminative visual cues is the key to distinguishing fine-grained categories. Although commonly used image-level data augmentation techniques have achieved great success in generic image classification problems, they are rarely applied in fine-grained scenarios, because their random editing-region behavior is prone to destroy the discriminative visual cues residing in the subtle regions. In this paper, we propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem. Specifically, we produce diversified augmented samples by translating image features along semantically meaningful directions. The semantic directions are estimated with a covariance prediction network, which predicts a sample-wise covariance matrix to adapt to the large intra-class variation inherent in fine-grained images. Furthermore, the covariance prediction network is jointly optimized with the classification network in a meta-learning manner to alleviate the degenerate solution problem. Experiments on four competitive fine-grained recognition benchmarks (CUB-200-2011, Stanford Cars, FGVC Aircrafts, NABirds) demonstrate that our method significantly improves the generalization performance on several popular classification networks (e.g., ResNets, DenseNets, EfficientNets, RegNets and ViT). Combined with a recently proposed method, our semantic data augmentation approach achieves state-of-the-art performance on the CUB-200-2011 dataset. The source code will be released.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Awen发布了新的文献求助10
1秒前
平常亦凝发布了新的文献求助10
1秒前
机灵柚子应助QJN采纳,获得10
2秒前
希望天下0贩的0应助十二采纳,获得20
3秒前
脑洞疼应助shuang采纳,获得10
3秒前
遇事不决睡大觉完成签到,获得积分10
4秒前
5秒前
5秒前
8秒前
呆萌的源智完成签到 ,获得积分10
9秒前
xsy完成签到 ,获得积分10
9秒前
tao完成签到 ,获得积分10
10秒前
平常亦凝完成签到,获得积分20
10秒前
10秒前
自渡完成签到 ,获得积分10
12秒前
十二完成签到,获得积分20
13秒前
野性的小懒虫完成签到 ,获得积分20
14秒前
活力的泥猴桃完成签到 ,获得积分10
15秒前
李健的小迷弟应助jam采纳,获得10
16秒前
霸气的香芦完成签到,获得积分10
16秒前
17秒前
Leohp完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
季夏十六完成签到,获得积分10
20秒前
纯真的无声完成签到 ,获得积分10
21秒前
科研小白发布了新的文献求助10
22秒前
李健应助科研通管家采纳,获得10
22秒前
淡然冬灵应助科研通管家采纳,获得30
22秒前
HEAUBOOK应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
武傲翔发布了新的文献求助30
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
乐乐应助科研通管家采纳,获得10
23秒前
田様应助科研通管家采纳,获得10
23秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801134
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330258
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681383
邀请新用户注册赠送积分活动 807540
科研通“疑难数据库(出版商)”最低求助积分说明 763728