亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of a machine learning model based on laboratory parameters for preoperative prediction of Ki-67 expression in gliomas

医学 人工智能 支持向量机 接收机工作特性 机器学习 阿达布思 随机森林 朴素贝叶斯分类器 逻辑回归 Lasso(编程语言) 人工神经网络 梯度升压 胶质瘤 统计 内科学 计算机科学 数学 万维网 癌症研究
作者
Jinlan Huang,Shoupeng Ding,Lijin Lin,Guanglei Zhong,Zhou Yu,Qingwen Luo,Dong-Mei Chen,Yazhi Chen,Sufei Zheng,Shihao Zheng
出处
期刊:Journal of Neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:143 (2): 1-13
标识
DOI:10.3171/2024.11.jns241673
摘要

OBJECTIVE Glioma is the most common form of brain tumor and has high mortality. The Ki-67 proliferation index, a vital marker of cell proliferation, has been demonstrated to predict tumor classification and prognosis. The aim of this study was to develop and validate a noninvasive model based on machine learning (ML) and routine laboratory parameters to preoperatively predict the level of Ki-67 in gliomas. METHODS A total of 506 patients with pathological confirmation of glioma from 2 medical centers (January 2020 to December 2023) were retrospectively enrolled and divided into training (n = 352), internal validation (n = 88), and external validation (n = 66) cohorts. According to the Ki-67 proliferation index, patients were classified into low Ki-67 (index < 10%) and high Ki-67 (index ≥ 10%) groups. Laboratory parameters were obtained within 1 week before surgery from the Laboratory Information System. The potential features associated with Ki-67 levels were screened using extreme gradient boosting (XGBoost), support vector machine (SVM), and least absolute shrinkage and selection operator (LASSO). Then, 10 ML classifiers, including SVM, XGBoost, logistic regression (LR), random forest, adaptive boosting (AdaBoost), gradient boosting machine, partitioning around medoids, naive Bayes, neural network, and bagged classification and regression trees (CART), were trained. The performance of these models was evaluated on internal and external validation sets using the area under the receiver operating characteristic curve (AUC). Calibration curve, decision curve, and clinical impact curve analyses were used for validation. RESULTS Fifteen laboratory parameters that met the requirements of XGBoost, SVM, and LASSO were selected. Among all tested ML models, the LR model had superior performance with relatively high AUC, accuracy, sensitivity, and specificity. The LR model achieved AUCs of 0.838 in the training set, 0.800 (with the highest accuracy [0.782] and optimal sensitivity [0.845]) in the internal validation set, and 0.757 in the external validation set. Finally, the LR model was visualized as a nomogram based on the top 6 laboratory parameters (age, anion gap, apolipoprotein A-1, apolipoprotein B, calcium, creatinine) to individually predict the Ki-67 proliferation index in patients with gliomas. CONCLUSIONS The authors successfully constructed an LR model based on routine laboratory parameters, with relatively high sensitivity and specificity, to preoperatively predict the level of Ki-67 in patients with gliomas, which might be helpful for prognostic evaluation and clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yys完成签到,获得积分10
4秒前
张晓祁完成签到,获得积分10
4秒前
yueying完成签到,获得积分10
14秒前
18秒前
Abl完成签到 ,获得积分10
19秒前
情怀应助陌陌采纳,获得10
23秒前
25秒前
33秒前
OYJH完成签到,获得积分10
35秒前
aujsdhab发布了新的文献求助10
35秒前
aujsdhab完成签到,获得积分10
45秒前
1分钟前
1分钟前
annazhang完成签到 ,获得积分10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
纯真如松完成签到,获得积分10
1分钟前
aaa5a123完成签到 ,获得积分10
1分钟前
nuo发布了新的文献求助10
2分钟前
2分钟前
白白白发布了新的文献求助10
2分钟前
2分钟前
李爱国应助昏睡的向真采纳,获得30
2分钟前
nuo完成签到,获得积分20
2分钟前
白白白完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Caleb完成签到,获得积分10
2分钟前
2分钟前
852应助当晚星散落采纳,获得10
2分钟前
2分钟前
2分钟前
Laoxing258发布了新的文献求助10
2分钟前
3分钟前
小二郎应助石榴汁的书采纳,获得10
3分钟前
发篇Sci不过分吧完成签到,获得积分10
3分钟前
酷酷海豚完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755072
求助须知:如何正确求助?哪些是违规求助? 5491124
关于积分的说明 15380800
捐赠科研通 4893386
什么是DOI,文献DOI怎么找? 2631982
邀请新用户注册赠送积分活动 1579839
关于科研通互助平台的介绍 1535675