Development and validation of a machine learning model based on laboratory parameters for preoperative prediction of Ki-67 expression in gliomas

医学 人工智能 支持向量机 接收机工作特性 机器学习 阿达布思 随机森林 朴素贝叶斯分类器 逻辑回归 Lasso(编程语言) 人工神经网络 梯度升压 胶质瘤 统计 内科学 计算机科学 数学 癌症研究 万维网
作者
Jinlan Huang,Shoupeng Ding,Lijin Lin,Guanglei Zhong,Zhou Yu,Qingwen Luo,Dong-Mei Chen,Yazhi Chen,Sufei Zheng,Shihao Zheng
出处
期刊:Journal of Neurosurgery [American Association of Neurological Surgeons]
卷期号:: 1-13
标识
DOI:10.3171/2024.11.jns241673
摘要

OBJECTIVE Glioma is the most common form of brain tumor and has high mortality. The Ki-67 proliferation index, a vital marker of cell proliferation, has been demonstrated to predict tumor classification and prognosis. The aim of this study was to develop and validate a noninvasive model based on machine learning (ML) and routine laboratory parameters to preoperatively predict the level of Ki-67 in gliomas. METHODS A total of 506 patients with pathological confirmation of glioma from 2 medical centers (January 2020 to December 2023) were retrospectively enrolled and divided into training (n = 352), internal validation (n = 88), and external validation (n = 66) cohorts. According to the Ki-67 proliferation index, patients were classified into low Ki-67 (index < 10%) and high Ki-67 (index ≥ 10%) groups. Laboratory parameters were obtained within 1 week before surgery from the Laboratory Information System. The potential features associated with Ki-67 levels were screened using extreme gradient boosting (XGBoost), support vector machine (SVM), and least absolute shrinkage and selection operator (LASSO). Then, 10 ML classifiers, including SVM, XGBoost, logistic regression (LR), random forest, adaptive boosting (AdaBoost), gradient boosting machine, partitioning around medoids, naive Bayes, neural network, and bagged classification and regression trees (CART), were trained. The performance of these models was evaluated on internal and external validation sets using the area under the receiver operating characteristic curve (AUC). Calibration curve, decision curve, and clinical impact curve analyses were used for validation. RESULTS Fifteen laboratory parameters that met the requirements of XGBoost, SVM, and LASSO were selected. Among all tested ML models, the LR model had superior performance with relatively high AUC, accuracy, sensitivity, and specificity. The LR model achieved AUCs of 0.838 in the training set, 0.800 (with the highest accuracy [0.782] and optimal sensitivity [0.845]) in the internal validation set, and 0.757 in the external validation set. Finally, the LR model was visualized as a nomogram based on the top 6 laboratory parameters (age, anion gap, apolipoprotein A-1, apolipoprotein B, calcium, creatinine) to individually predict the Ki-67 proliferation index in patients with gliomas. CONCLUSIONS The authors successfully constructed an LR model based on routine laboratory parameters, with relatively high sensitivity and specificity, to preoperatively predict the level of Ki-67 in patients with gliomas, which might be helpful for prognostic evaluation and clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huizi发布了新的文献求助10
刚刚
1秒前
文献蚂蚁发布了新的文献求助10
1秒前
1秒前
冰魂应助打工仔采纳,获得20
2秒前
苏酥发布了新的文献求助10
3秒前
酷波er应助学习要认真喽采纳,获得10
3秒前
xinxinzhu完成签到,获得积分10
3秒前
3秒前
CodeCraft应助张萌采纳,获得10
4秒前
龙霸天完成签到,获得积分10
6秒前
英子发布了新的文献求助10
6秒前
bbb发布了新的文献求助10
6秒前
7秒前
冰魂应助六初采纳,获得20
8秒前
英俊的小蝴蝶完成签到,获得积分10
8秒前
9秒前
顺心凡之完成签到,获得积分10
9秒前
9秒前
caisongliang发布了新的文献求助10
10秒前
xx关闭了xx文献求助
10秒前
10秒前
Wtyy完成签到,获得积分10
10秒前
12秒前
13秒前
Jasper应助无颜采纳,获得20
13秒前
小二郎应助科研通管家采纳,获得10
14秒前
14秒前
Jasper应助科研通管家采纳,获得10
15秒前
无聊科研应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
默欢发布了新的文献求助10
15秒前
852应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
机灵柚子应助科研通管家采纳,获得10
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
孙燕应助科研通管家采纳,获得10
15秒前
苏酥完成签到,获得积分10
16秒前
思源应助马明旋采纳,获得10
17秒前
脑洞疼应助盐kk采纳,获得10
17秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871187
求助须知:如何正确求助?哪些是违规求助? 3413299
关于积分的说明 10683969
捐赠科研通 3137766
什么是DOI,文献DOI怎么找? 1731163
邀请新用户注册赠送积分活动 834643
科研通“疑难数据库(出版商)”最低求助积分说明 781250