PHNet: A pulmonary hypertension detection network based on cine cardiac magnetic resonance images using a hybrid strategy of adaptive triplet and binary cross-entropy losses

磁共振成像 二进制数 心脏磁共振 熵(时间箭头) 心脏磁共振成像 计算机科学 人工智能 模式识别(心理学) 核磁共振 放射科 医学 物理 数学 算术 量子力学
作者
Xue Yuan,Xiaojuan Guo,Y. X. Luo,Xiuhong Guan,Qi Li,Zhiquan Situ,Zijie Zhou,Xin Huang,Zhaowei Rong,Yingzi Lin,Mingxi Liu,Juanni Gong,Hongyan Liu,Qi Yang,Xinchun Li,Rongli Zhang,Chengwang Lei,Shumao Pang,Guoxi Xie
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3555621
摘要

Pulmonary hypertension (PH) is a fatal pulmonary vascular disease. The standard diagnosis of PH heavily relies on an invasive technique, i.e., right heart catheterization, which leads to a delay in diagnosis and serious consequences. Noninvasive approaches are crucial for detecting PH as early as possible; however, it remains a challenge, especially in detecting mild PH patients. To address this issue, we present a new fully automated framework, hereinafter referred to as PHNet, for noninvasively detecting PH patients, especially improving the detection accuracy of mild PH patients, based on cine cardiac magnetic resonance (CMR) images. The PHNet framework employs a hybrid strategy of adaptive triplet and binary cross-entropy losses (HSATBCL) to enhance discriminative feature learning for classifying PH and non-PH. Triplet pairs in HSATBCL are created using a semi-hard negative mining strategy which maintains the stability of the training process. Experiments show that the detection error rate of PHNet for mild PH is reduced by 24.5% on average compared to state-of-the-art PH detection models. The hybrid strategy can effectively improve the model's ability to detect PH, making PHNet achieve an average area under the curve (AUC) of 0.964, an accuracy of 0.912, and an F1-score of 0.884 in the internal validation dataset. In the external testing dataset, PHNet achieves an average AUC value of 0.828. Thus, PHNet has great potential for noninvasively detecting PH based on cine CMR images in clinical practice. Future research could explore more clinical information and refine feature extraction to further enhance the network performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEAUBOOK应助LuoYR@SZU采纳,获得10
1秒前
接好运完成签到,获得积分10
1秒前
载尘发布了新的文献求助10
2秒前
macleod完成签到,获得积分10
2秒前
2秒前
2秒前
wjj发布了新的文献求助10
2秒前
2秒前
seven完成签到,获得积分10
2秒前
核桃应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
3秒前
HEAUBOOK应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
丘比特应助科研通管家采纳,获得30
3秒前
CodeCraft应助huieqybghog采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
cdercder应助科研通管家采纳,获得10
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
卷网那个完成签到,获得积分10
4秒前
4秒前
科研通AI5应助婷婷采纳,获得20
4秒前
4秒前
willam发布了新的文献求助10
5秒前
liangmh应助张美琪采纳,获得10
5秒前
axn完成签到,获得积分10
5秒前
科研通AI5应助犹豫梨愁采纳,获得10
5秒前
甜美雪兰完成签到,获得积分10
6秒前
KEHUGE完成签到,获得积分10
7秒前
7秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805810
求助须知:如何正确求助?哪些是违规求助? 3350734
关于积分的说明 10350610
捐赠科研通 3066591
什么是DOI,文献DOI怎么找? 1683999
邀请新用户注册赠送积分活动 809197
科研通“疑难数据库(出版商)”最低求助积分说明 765407