成核
锌
原位
水溶液
接口(物质)
材料科学
金属
可扩展性
生物量(生态学)
化学工程
纳米技术
化学
冶金
物理化学
计算机科学
有机化学
生态学
工程类
生物
数据库
吉布斯等温线
作者
Xin Liu,Jia‐Wei Qian,Jingwei Chen,Yunkai Xu,Weiyi Wang,Wei‐Xu Dong,Wei Hu,Guorui Cai,Jun Lü,Shu‐Hong Yu,Lifeng Chen
标识
DOI:10.1002/ange.202504613
摘要
Aqueous zinc metal batteries are promising candidates for large‐grid energy storage due to their safety, cost‐effectiveness, and durability. However, challenges like dendrite growth, corrosion, and the hydrogen evolution reaction (HER) on the zinc anode hinder their performance. Herein, we propose a sustainable and scalable approach to form a copper gluconate@carboxymethyl chitosan@kaolin (CuCK) interface layer, inducing gradient nucleation sites via in‐situ galvanic and galvanostatic processes. The biomass‐based CuCK coating features a gradient CuxZny alloy structure that homogenizes interfacial electric field distribution and enhances electrochemical stability. Furthermore, the incorporated Cu2+‐loaded kaolin and carboxymethyl chitosan regulate Zn2+ flux, accelerate Zn2+ desolvation, and suppress HER. The resulting Zn@CuCK anode achieves a high cumulative capacity of 5500 mAh cm−2 in symmetrical cells, exhibits excellent durability in Zn@CuCK//NaV3O8·1.5H2O full cells across a wide temperature range (−30 to 60 °C), and endows the assembly of pouch cells with high energy density.
科研通智能强力驱动
Strongly Powered by AbleSci AI