Automated Integration and Quality Assessment of Chromatographic Peaks in LC–MS-Based Metabolomics and Lipidomics Using TARDIS

脂类学 化学 代谢组学 色谱法 分析化学(期刊) 生物化学
作者
Pablo Vangeenderhuysen,Matthijs Vynck,Beata Pomian,Kimberly De Windt,Emile Callemeyn,Ellen De Paepe,Lindsey De Commer,Jeroen Raes,Tim S. Nawrot,Johannes Rainer,Lieselot Hemeryck,Lynn Vanhaecke
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.5c00567
摘要

In recent years, liquid chromatography coupled to mass spectrometry (LC-MS) has emerged as the main technology to measure the whole of small molecules (the metabolome) in a diversity of matrices. Within the field of computational metabolomics, significant efforts have been made in the development of tools to (pre)process untargeted LC-MS data. However, tools that circumvent the time-consuming, manual preprocessing of targeted LC-MS data with vendor-specific software remain sparse. We therefore present TARDIS, an open-source R package for the analysis of targeted LC-MS metabolomics and lipidomics data. Both established (area under the curve, maximum intensity and points over the peak) and recently developed (custom signal-to-noise ratio and bell-curve similarity) quality metrics were included to offer increased efficiency of peak quality evaluation. The robustness of TARDIS' peak integration was demonstrated through a quantitative comparison to state-of-the-art vendor software. To this end, applicability at a large scale (n = 1786) was validated across three distinct biofluids (stool, saliva and urine) and two LC-MS instruments, using data from the FAME, ENVIRONAGE, and FGFP cohort studies. In conclusion, TARDIS offers a robust and scalable open-source solution for the targeted analysis of LC-MS metabolomics and lipidomics data. TARDIS and its source code are freely available at https://github.com/UGent-LIMET/TARDIS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
五档张诊人完成签到,获得积分10
刚刚
ding应助古德赖可采纳,获得10
1秒前
1秒前
1秒前
Hy.发布了新的文献求助10
1秒前
云澈完成签到,获得积分10
3秒前
4秒前
4秒前
6秒前
6秒前
RuoLi完成签到,获得积分10
6秒前
miao完成签到 ,获得积分10
7秒前
赘婿应助无为采纳,获得10
7秒前
yangxiao2025完成签到,获得积分20
8秒前
Margaret完成签到 ,获得积分10
8秒前
共享精神应助华鹰采纳,获得10
8秒前
8秒前
忙碌的数学人完成签到,获得积分10
8秒前
9秒前
9秒前
蝶步韶华发布了新的文献求助20
11秒前
山山而川发布了新的文献求助10
12秒前
CipherSage应助mujin采纳,获得10
12秒前
无辜茉莉发布了新的文献求助10
13秒前
zcf完成签到,获得积分10
13秒前
两个轮发布了新的文献求助10
14秒前
yangxiao2025发布了新的文献求助10
14秒前
14秒前
刘良烽完成签到,获得积分10
14秒前
15秒前
李爱国应助凸迩丝儿采纳,获得10
17秒前
猪幺妖发布了新的文献求助10
17秒前
17秒前
赘婿应助义气天真采纳,获得50
17秒前
送你一匹马完成签到 ,获得积分10
17秒前
都是发布了新的文献求助10
18秒前
几几发布了新的文献求助30
20秒前
736550205发布了新的文献求助10
20秒前
21秒前
打打应助坦率的寻双采纳,获得10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784148
求助须知:如何正确求助?哪些是违规求助? 3329252
关于积分的说明 10241071
捐赠科研通 3044752
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759268