Multidimensional Emotional Analysis Technology for Social Media Based on Viewpoint Extraction

社会化媒体 计算机科学 情绪分析 数据科学 心理学 万维网 人工智能
作者
Meng Zhang,H Li,Wei Yang
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s021964922550011x
摘要

With the global popularity of social media, how to effectively analyse the massive text data generated on these platforms to better understand users’ emotions and perspectives has become an important research direction. This study proposes a multidimensional sentiment analysis technique based on viewpoint extraction to overcome the shortcomings of traditional sentiment analysis methods in capturing emotional diversity and complexity. First, the study collects text data from various social media platforms, and after cleaning and preprocessing, constructs a sentiment analysis model that includes both serial and hybrid networks. In serial networks, a multi-layer architecture is adopted, including bidirectional encoders, convolutional neural networks, and bidirectional long short-term memory networks, to extract text features in an orderly manner. The hybrid network integrates the feature representations of different models and introduces a dual attention mechanism to enhance the ability to recognise evaluation objects and viewpoint holders. The results demonstrated that the proposed method exhibited enhanced accuracy, with improvements ranging from 1.51% to 0.96% in comparison to other serial or parallel models, and from 9.09% in comparison to other models. Introducing a dual attention mechanism significantly improves the accuracy of sentiment information extraction, with a performance improvement of about 5-6% compared to using only ordinary algorithms. This further substantiates the pivotal role of hierarchical feature extraction. Finally, the research findings provide a new perspective for social media sentiment analysis, which is expected to play an important role in practical applications such as marketing and public opinion monitoring. Further research will be conducted with the aim of expanding the data sample to enhance the model’s generalisation ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱云朵应助Cat采纳,获得10
刚刚
粉色完成签到,获得积分10
刚刚
感谢你的帮助完成签到 ,获得积分10
1秒前
浅陌初心完成签到 ,获得积分10
1秒前
cc123完成签到,获得积分10
1秒前
心肺复苏~完成签到,获得积分10
2秒前
英俊的铭应助匀升采纳,获得10
2秒前
andy发布了新的文献求助10
2秒前
mingtian完成签到,获得积分10
2秒前
baimiaomuzi完成签到,获得积分10
2秒前
Knight完成签到,获得积分10
2秒前
科研板砖发布了新的文献求助10
4秒前
4秒前
壮观的裙子完成签到,获得积分20
5秒前
啦啦啦完成签到,获得积分10
5秒前
Knight发布了新的文献求助10
5秒前
852应助朴素代芙采纳,获得10
5秒前
谢挽风完成签到,获得积分10
6秒前
6秒前
6秒前
chenxuuu完成签到,获得积分10
6秒前
SSSstriker完成签到,获得积分0
6秒前
伶俐的鞋子完成签到,获得积分20
6秒前
Atari完成签到,获得积分10
7秒前
禹代秋完成签到 ,获得积分10
7秒前
7秒前
x5kyi完成签到,获得积分10
9秒前
隐形之玉完成签到,获得积分10
9秒前
荒野脱马发布了新的文献求助10
9秒前
小张完成签到,获得积分10
10秒前
up发布了新的文献求助10
10秒前
liu完成签到 ,获得积分10
10秒前
肖耶啵发布了新的文献求助10
10秒前
小糖完成签到 ,获得积分10
10秒前
kkx完成签到 ,获得积分10
11秒前
科研小万发布了新的文献求助10
11秒前
冷语完成签到,获得积分10
11秒前
11秒前
默默的富发布了新的文献求助20
12秒前
能量球完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784938
求助须知:如何正确求助?哪些是违规求助? 3330274
关于积分的说明 10245276
捐赠科研通 3045590
什么是DOI,文献DOI怎么找? 1671719
邀请新用户注册赠送积分活动 800686
科研通“疑难数据库(出版商)”最低求助积分说明 759609