Unveiling the ageing-related genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning

骨关节炎 基因 生物信息学 代谢综合征 老化 医学 计算生物学 生物 遗传学 病理 内科学 肥胖 替代医学
作者
Jian Huang,Lu Wang,Jiangfei Zhou,Tianming Dai,Weicong Zhu,Tianrui Wang,Hongde Wang,Yingze Zhang
出处
期刊:Artificial Cells Nanomedicine and Biotechnology [Informa]
卷期号:53 (1): 57-68 被引量:6
标识
DOI:10.1080/21691401.2025.2471762
摘要

Ageing significantly contributes to osteoarthritis (OA) and metabolic syndrome (MetS) pathogenesis, yet the underlying mechanisms remain unknown. This study aimed to identify ageing-related biomarkers in OA patients with MetS. OA and MetS datasets and ageing-related genes (ARGs) were retrieved from public databases. The limma package was used to identify differentially expressed genes (DEGs), and weighted gene coexpression network analysis (WGCNA) screened gene modules, and machine learning algorithms, such as random forest (RF), support vector machine (SVM), generalised linear model (GLM), and extreme gradient boosting (XGB), were employed. The nomogram and receiver operating characteristic (ROC) curve assess the diagnostic value, and CIBERSORT analysed immune cell infiltration. We identified 20 intersecting genes among DEGs of OA, key module genes of MetS, and ARGs. By comparing the accuracy of the four machine learning models for disease prediction, the SVM model, which includes CEBPB, PTEN, ARPC1B, PIK3R1, and CDC42, was selected. These hub ARGs not only demonstrated strong diagnostic values based on nomogram data but also exhibited a significant correlation with immune cell infiltration. Building on these findings, we have identified five hub ARGs that are associated with immune cell infiltration and have constructed a nomogram aimed at early diagnosing OA patients with MetS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆子发布了新的文献求助10
1秒前
QQ完成签到,获得积分10
1秒前
2秒前
for_abSCI发布了新的文献求助30
2秒前
Lucas应助无限的绮晴采纳,获得10
2秒前
斯文败类应助无限的绮晴采纳,获得10
2秒前
2秒前
淡然惜萱发布了新的文献求助30
3秒前
3秒前
3秒前
castle完成签到,获得积分10
4秒前
4秒前
DM发布了新的文献求助10
4秒前
zhangyuting完成签到 ,获得积分10
4秒前
丘比特应助走马采纳,获得30
5秒前
机灵的忆南完成签到,获得积分10
5秒前
杨雨完成签到,获得积分10
5秒前
5秒前
liu完成签到 ,获得积分10
6秒前
满意海秋完成签到,获得积分10
6秒前
6秒前
6秒前
小蘑菇应助YDM采纳,获得10
6秒前
7秒前
未命名完成签到,获得积分10
7秒前
友好的缘分完成签到,获得积分10
7秒前
聪明的心语完成签到,获得积分10
7秒前
外号胡一八完成签到 ,获得积分10
7秒前
8秒前
情怀应助半梦采纳,获得10
8秒前
Alien发布了新的文献求助10
9秒前
王旭完成签到,获得积分20
9秒前
9秒前
Akim应助无语的外套采纳,获得10
10秒前
盼盼527发布了新的文献求助10
10秒前
安详的冷安完成签到,获得积分10
10秒前
林一发布了新的文献求助10
10秒前
orixero应助都美秋采纳,获得10
11秒前
panjunlu完成签到,获得积分10
11秒前
小新应助感动归尘采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5081906
求助须知:如何正确求助?哪些是违规求助? 4299471
关于积分的说明 13395537
捐赠科研通 4123225
什么是DOI,文献DOI怎么找? 2258249
邀请新用户注册赠送积分活动 1262556
关于科研通互助平台的介绍 1196541