Artificial Synaptic Properties in Oxygen-Based Electrochemical Random-Access Memory with CeO2 Nanoparticle Assembly as Gate Insulator for Neuromorphic Computing

神经形态工程学 材料科学 纳米颗粒 纳米技术 电阻随机存取存储器 绝缘体(电) 随机存取 光电子学 非易失性存储器 人工神经网络 计算机科学 人工智能 电气工程 电压 工程类 操作系统
作者
Boyoung Jeong,Taeyun Noh,Jimin Han,Jiyeon Ryu,Jae‐Gwan Park,Younguk Kim,Yong‐Hoon Choi,Sehyun Lee,Jongnam Park,Tae‐Sik Yoon
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:4
标识
DOI:10.1021/acsami.5c00027
摘要

Beyond the von Neumann architecture, neuromorphic computing attracts considerable attention as an energy-efficient computing system for data-centric applications. Among various synapse device candidates, a memtransistor with a three-terminal structure has been considered to be a promising one for artificial synapse with controllable weight update characteristics and strong immunity to disturbance due to decoupled write and read electrode. In this study, oxygen ion exchange-based electrochemical random-access memory consisting of the ZnO channel and CeO2 nanoparticle (NP) assembly as a gate insulator, also as an ion exchange layer, is proposed and investigated as an artificial synapse device for neuromorphic computing. The memtransistor shows a tunable and reversible conductance change via oxygen ion exchange between ZnO and CeO2 NPs upon gate voltage application. The use of CeO2 enables efficient oxygen ion exchange with the ZnO channel due to its inherent property of easily absorbing and releasing oxygen ions by altering the valence state of the Ce cation. Additionally, the porous structure of the CeO2 NP assembly supports the oxygen reservoir function while retaining its insulating properties as a gate insulator, ensuring reliable device operation. Also, its porous nature enhancing oxygen ion exchange permits high-speed operation within tens of microsecond range. Based on the facilitated oxygen ion exchange, a highly linear and symmetric conductance modulation is achieved with good endurance over 104 pulses and excellent nonvolatile retention. Furthermore, the memtransistor mimics representative functions of the biological synapse such as paired-pulse facilitation, short-term (STP) and long-term plasticity (LTP), and the transition from STP to LTP as repeating learning cycles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ricardo发布了新的文献求助10
1秒前
2秒前
小二郎应助白潇潇采纳,获得10
2秒前
2秒前
Enoch发布了新的文献求助10
3秒前
啦啦啦发布了新的文献求助10
3秒前
wanqiu完成签到,获得积分20
3秒前
科研狗发布了新的文献求助10
3秒前
4秒前
Adzuki0812发布了新的文献求助10
5秒前
5秒前
共享精神应助luo采纳,获得10
5秒前
5秒前
5秒前
聪慧的正豪应助cyrong采纳,获得10
6秒前
吐司完成签到,获得积分10
6秒前
梨里发布了新的文献求助30
6秒前
FF完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
开朗尔冬完成签到,获得积分10
8秒前
8秒前
飞鸿影下发布了新的文献求助10
8秒前
四然发布了新的文献求助10
8秒前
9秒前
今夜有雨完成签到 ,获得积分10
9秒前
科研狗完成签到,获得积分10
9秒前
9秒前
crystal发布了新的文献求助30
10秒前
Liu_cx完成签到,获得积分10
10秒前
CodeCraft应助波啦啦采纳,获得10
10秒前
Thexun完成签到,获得积分10
10秒前
上官若男应助Gyu采纳,获得10
10秒前
budong完成签到,获得积分10
10秒前
迪兒发布了新的文献求助10
11秒前
11秒前
倒头就睡发布了新的文献求助10
11秒前
12秒前
Hello应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4949610
求助须知:如何正确求助?哪些是违规求助? 4212785
关于积分的说明 13100767
捐赠科研通 3994405
什么是DOI,文献DOI怎么找? 2186482
邀请新用户注册赠送积分活动 1201617
关于科研通互助平台的介绍 1115139