Can Generative Artificial Intelligence be a Good Teaching Assistant?—An Empirical Analysis Based on Generative AI ‐Assisted Teaching

生成语法 计算机科学 生成模型 人工智能 教学方法 数学教育 心理学
作者
Qianwen Tang,Wenbo Deng,Yidan Huang,Shuaijie Wang,Hao Zhang
出处
期刊:Journal of Computer Assisted Learning [Wiley]
卷期号:41 (3) 被引量:7
标识
DOI:10.1111/jcal.70027
摘要

ABSTRACT Background Generative Artificial Intelligence (AI) shows promise in enhancing personalised learning and improving educational efficiency. However, its integration into education raises concerns about misinformation and over‐reliance, particularly among adolescents. Teacher supervision plays a critical role in mitigating these risks and ensuring the effective use of Generative AI in classrooms. Despite the growing interest in Generative AI, there is limited empirical research on its actual impact and the role of teacher oversight. Objective The purpose of this study is to systematically assess the role of Generative AI in classroom teaching, with a specific focus on how teacher supervision shapes its effectiveness. Method This study employed a quasi‐experimental design to examine differences in learning outcomes among students under three instructional methods: traditional computer‐assisted teaching, Generative AI‐assisted teaching without teacher supervision and Generative AI‐assisted teaching with teacher supervision. The study was implemented in the context of a two‐week Information Science and Technology course in a middle school, involving three classes with 45, 41 and 45 students, respectively. To ensure consistency in teaching styles, all classes were taught by the same experienced teacher. Data collection included a knowledge test to assess knowledge mastery, as well as questionnaires to measure learning satisfaction and engagement. The collected data were analysed using one‐way ANOVA to compare the effectiveness of the three teaching methods. Results and Conclusion Compared with traditional computer‐assisted teaching, Generative AI‐assisted teaching can significantly enhance students' learning satisfaction, but can not improve their learning engagement and knowledge mastery level. Furthermore, in the process of Generative AI‐assisted teaching, teacher supervision can significantly increase students' learning engagement and knowledge mastery compared with situations without teacher supervision. This study indicated Generative AI's potential as an educational tool and underscored the essential role of teacher supervision. Implications This study fills a critical gap by providing empirical evidence on how Generative AI and teacher supervision interact to improve classroom learning outcomes. It shows that Generative AI's potential to enhance learning outcomes is significantly amplified with teacher oversight.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhao发布了新的文献求助20
刚刚
奇客完成签到,获得积分10
1秒前
琪求好运完成签到,获得积分10
2秒前
CipherSage应助12采纳,获得10
2秒前
英俊的铭应助baolongzhan采纳,获得10
4秒前
6秒前
bill完成签到,获得积分10
8秒前
purkid发布了新的文献求助10
8秒前
丹丹发布了新的文献求助10
8秒前
liujiaqi发布了新的文献求助10
9秒前
9秒前
思源应助Ethanyoyo0917采纳,获得10
10秒前
田様应助89采纳,获得10
11秒前
小鱼丸完成签到,获得积分10
12秒前
12秒前
陈某完成签到,获得积分10
12秒前
12秒前
grzzz发布了新的文献求助10
12秒前
科研南完成签到,获得积分10
12秒前
lucky发布了新的文献求助10
14秒前
wang发布了新的文献求助10
15秒前
HP完成签到 ,获得积分10
17秒前
baolongzhan发布了新的文献求助10
17秒前
LSX发布了新的文献求助10
17秒前
changping应助purkid采纳,获得10
18秒前
Orange应助小小雪采纳,获得10
18秒前
丑鸭子完成签到,获得积分20
20秒前
20秒前
Eva完成签到,获得积分10
20秒前
21秒前
21秒前
盏盏应助liujiaqi采纳,获得10
21秒前
马达完成签到,获得积分10
21秒前
张步完成签到 ,获得积分10
21秒前
zz完成签到 ,获得积分10
22秒前
手抓饼啊完成签到,获得积分10
24秒前
徐桐完成签到,获得积分10
24秒前
李健应助cloud采纳,获得10
25秒前
Owen应助watercolding采纳,获得10
25秒前
Huang完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305475
求助须知:如何正确求助?哪些是违规求助? 4451562
关于积分的说明 13852455
捐赠科研通 4339004
什么是DOI,文献DOI怎么找? 2382268
邀请新用户注册赠送积分活动 1377388
关于科研通互助平台的介绍 1344904