Prompting for Creative Problem-Solving: A Process-Mining Study

过程(计算) 计算机科学 创造性地解决问题 过程管理 工艺工程 心理学 业务 工程类 创造力 社会心理学 程序设计语言
作者
Marek Urban,Jiří Lukavský,Cyril Brom,Veronika Hein,Filip Svacha,Filip Děchtěrenko,Kamila Urban
标识
DOI:10.31234/osf.io/68fh4_v3
摘要

Background: Although generative‑AI systems are increasingly used to solve non‑routine problems, effective prompting strategies remain largely underexplored.Aims: The present study investigates how university students prompt ChatGPT to solve complex ill-defined problems, specifically examining which prompts are associated with higher or lower problem-solving performance.Sample: Seventy-seven university students (53 women; Mage = 22.4 years) participated in the study.Methods: To identify various prompt types employed by students, the study utilized qualitative analysis of interactions with ChatGPT 3.5 during the resolution of the creative problem-solving task. Participants’ performance was measured by the quality, elaboration, and originality of their ideas. Subsequently, two-step clustering was employed to identify groups of low- and high-performing students. Finally, process-mining techniques (heuristics miner) were used to analyze the interactions of low- and high-performing students.Results: The findings suggest that including clear evaluation criteria when prompting ChatGPT to generate ideas (rs = .38), providing ChatGPT with an elaborated context for idea generation (rs = .47), and offering specific feedback (rs = .45), enhances the quality, elaboration, and originality of the solutions. Successful problem-solving involves iterative human-AI regulation, with high performers using an overall larger number of prompts (d = 0.82). High performers interacted with ChatGPT through dialogue, where they monitored and regulated the generation of ideas, while low performers used ChatGPT as an information resource.Conclusions: These results emphasize the importance of active and iterative engagement for creative problem-solving and suggest that educational practices should foster metacognitive monitoring and regulation to maximize the benefits of human-AI collaboration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助冷子旋采纳,获得10
刚刚
ajiduo完成签到 ,获得积分10
2秒前
大方嵩完成签到,获得积分10
2秒前
轻松听双完成签到 ,获得积分10
3秒前
Lucas应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
子车茗应助科研通管家采纳,获得20
6秒前
Gauss应助科研通管家采纳,获得20
6秒前
科研通AI6应助科研通管家采纳,获得50
6秒前
ding应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
7秒前
10秒前
XX发布了新的文献求助10
11秒前
汉堡包应助K99采纳,获得10
12秒前
momo发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
斯文败类应助胡志飞采纳,获得10
18秒前
wanci应助我们仨采纳,获得10
19秒前
yyyyyy发布了新的文献求助10
20秒前
卡蒂狗发布了新的文献求助10
21秒前
21秒前
kw98完成签到 ,获得积分10
22秒前
23秒前
酷波er应助南卡采纳,获得10
24秒前
26秒前
xfl发布了新的文献求助10
26秒前
26秒前
疯狂的晓山完成签到,获得积分10
28秒前
乐乐应助吱吱采纳,获得10
28秒前
29秒前
胡志飞完成签到,获得积分20
30秒前
InTroLLe完成签到,获得积分10
30秒前
znlion发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4776294
求助须知:如何正确求助?哪些是违规求助? 4108276
关于积分的说明 12708195
捐赠科研通 3829331
什么是DOI,文献DOI怎么找? 2112566
邀请新用户注册赠送积分活动 1136408
关于科研通互助平台的介绍 1020093