铊
缺氧水域
氧化还原
氧化物
转化(遗传学)
还原剂
氧气
化学
吸收(声学)
矿物学
分解
化学转化
还原(数学)
氧化还原
清除
材料科学
化学工程
氧化态
分析化学(期刊)
还原消去
吸收光谱法
化学还原
光谱学
光化学
核化学
化学计量学
离子交换
两步走
配体(生物化学)
X射线光电子能谱
选择性还原
锌
还原电位
化学反应
反应机理
动力学
金属
扫描电子显微镜
极限氧浓度
无机化学
作者
Wanpeng Chen,Juan Liu,Xiaoliu Huangfu,Yan Chen,Wenye Zhong,Yu Liu,Yuheng Huang,Hongxia Liu
标识
DOI:10.1021/acs.est.4c12009
摘要
Mn oxides play a critical role in Tl scavenging and accumulation in the epibiotic environment. However, the effect of Mn oxide reduction in the Mn/Fe cycle on Tl mobilization is not clear. Herein, the influence of Mn oxide configuration, oxygen environment, and degree of reduction on MnO2 transformation and associated Tl species distribution is investigated. In oxic environments, both typical δ-MnO2 and α-MnO2 structures (i.e., layered and tunneled, respectively) can immobilize Tl(I) for a long time. In mild-to-moderate reducing anoxic environments, the drastic reductive transformation of δ-MnO2 results in Tl binding, mainly in an exchangeable form. In highly reducing environments, δ-MnO2 or α-MnO2 is converted to Manganite, resulting in the release of more Tl. Tl-LIII edge X-ray absorption spectroscopy indicates that oxidized Tl(III) (54-62%) is converted to structural Tl(I) (67-80%) and bound to interlayer/tunnel centers during the reductive transformation of MnO2, which enhances Tl exchange in δ-MnO2 and leads to Tl immobilization in α-MnO2. Our results show that anoxic Tl(I)-/Mn(II)-/Fe(II)-induced MnO2 transformation can enhance Tl mobilization, and tunneled MnO2 may have a more sustainable Tl immobilization potential than layered MnO2, which improves the general understanding of the geochemical behavior of Tl in different Mn-related reducing environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI