亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparing large Language models and human annotators in latent content analysis of sentiment, political leaning, emotional intensity and sarcasm

讽刺 情绪分析 政治 计算机科学 自然语言处理 内容(测量理论) 人工智能 强度(物理) 语言学 讽刺 数学 政治学 数学分析 哲学 物理 量子力学 法学
作者
Ljubiša Bojić,Olga Zagovora,Asta Zelenkauskaitė,Vuk Vuković,Milan Čabarkapa,Selma Veseljević Jerković,Ana Jovančević
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-96508-3
摘要

In the era of rapid digital communication, vast amounts of textual data are generated daily, demanding efficient methods for latent content analysis to extract meaningful insights. Large Language Models (LLMs) offer potential for automating this process, yet comprehensive assessments comparing their performance to human annotators across multiple dimensions are lacking. This study evaluates the inter-rater reliability, consistency, and quality of seven state-of-the-art LLMs. These include variants of OpenAI's GPT-4, Gemini, Llama-3.1-70B, and Mixtral 8 × 7B. Their performance is compared to human annotators in analyzing sentiment, political leaning, emotional intensity, and sarcasm detection. The study involved 33 human annotators and eight LLM variants assessing 100 curated textual items. This resulted in 3,300 human and 19,200 LLM annotations. LLM performance was also evaluated across three-time points to measure temporal consistency. The results reveal that both humans and most LLMs exhibit high inter-rater reliability in sentiment analysis and political leaning assessments, with LLMs demonstrating higher reliability than humans. In emotional intensity, LLMs displayed higher reliability compared to humans, though humans rated emotional intensity significantly higher. Both groups struggled with sarcasm detection, evidenced by low reliability. Most LLMs showed excellent temporal consistency across all dimensions, indicating stable performance over time. This research concludes that LLMs, especially GPT-4, can effectively replicate human analysis in sentiment and political leaning, although human expertise remains essential for emotional intensity interpretation. The findings demonstrate the potential of LLMs for consistent and high-quality performance in certain areas of latent content analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
wdnyrrc发布了新的文献求助10
19秒前
wesley完成签到 ,获得积分10
26秒前
你好好好完成签到,获得积分10
34秒前
44秒前
杨gj完成签到,获得积分10
47秒前
杨gj发布了新的文献求助10
49秒前
JD完成签到 ,获得积分10
53秒前
科目三应助杨gj采纳,获得10
54秒前
斯寜应助科研通管家采纳,获得20
58秒前
HuiHui完成签到,获得积分10
58秒前
58秒前
聪慧的娜完成签到 ,获得积分10
1分钟前
高高的坤完成签到 ,获得积分10
1分钟前
1分钟前
nicaicai发布了新的文献求助10
1分钟前
1分钟前
豌豆发布了新的文献求助10
1分钟前
香蕉觅云应助Kevin采纳,获得10
1分钟前
隐形曼青应助豌豆采纳,获得10
1分钟前
斯文梦寒完成签到 ,获得积分10
1分钟前
1分钟前
你好完成签到 ,获得积分10
1分钟前
wdnyrrc发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Leofar完成签到 ,获得积分10
2分钟前
斯寜应助科研通管家采纳,获得10
2分钟前
斯寜应助科研通管家采纳,获得10
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
mkeale应助科研通管家采纳,获得20
2分钟前
11112321321发布了新的文献求助10
3分钟前
Akim应助淡然的蚂蚁采纳,获得10
3分钟前
南笺完成签到 ,获得积分10
3分钟前
孙老师完成签到 ,获得积分10
3分钟前
iwaking完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777580
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212658
捐赠科研通 3038289
什么是DOI,文献DOI怎么找? 1667296
邀请新用户注册赠送积分活动 798086
科研通“疑难数据库(出版商)”最低求助积分说明 758215