Tongue coating microbiota-based machine learning for diagnosing digestive system tumours

医学 涂层 舌头 计算机科学 病理 纳米技术 材料科学
作者
Yubo Ma,Zhengchen Jiang,Yanan Wang,Li-Bin Pan,Kang Liu,Ruihong Xia,Yuan Li,Xiangdong Cheng
出处
期刊:Journal of Oral Microbiology [Taylor & Francis]
卷期号:17 (1)
标识
DOI:10.1080/20002297.2025.2487645
摘要

Digestive system tumours (DSTs) often diagnosed late due to nonspecific symptoms. Non-invasive biomarkers are crucial for early detection and improved outcomes. We collected tongue coating samples from 710 patients diagnosed with DST and 489 healthy controls (HC) from April 2023, to December 2023. Microbial composition was analyzed using 16S rRNA sequencing, and five machine learning algorithms were applied to assess the diagnostic potential of tongue coating microbiota. Alpha diversity analysis showed that the microbial diversity in the tongue coating was significantly increased in DST patients. LEfSe analysis identified DST-enriched genera Alloprevotella and Prevotella, contrasting with HC-dominant taxa Neisseria, Haemophilus, and Porphyromonas (LDA >4). Notably, when comparing each of the four DST subtypes with the HC group, the proportion of Haemophilus in the HC group was significantly higher, and it was identified as an important feature for distinguishing the HC group. Machine learning validation demonstrated superior diagnostic performance of the Extreme Gradient Boosting (XGBoost) model, achieving an AUC of 0.926 (95% CI: 0.893-0.958) in internal validation, outperforming the other four machine learning models. Tongue coating microbiota shows promise as a non-invasive biomarker for DST diagnosis, supported by robust machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
my完成签到,获得积分10
1秒前
1秒前
2秒前
大个应助FeliciaLee采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
祖之微笑发布了新的文献求助10
5秒前
机灵的乐荷完成签到,获得积分10
5秒前
zzz发布了新的文献求助10
6秒前
dwc完成签到,获得积分10
6秒前
赵廷潇发布了新的文献求助10
6秒前
麻雀发布了新的文献求助10
7秒前
张耘硕发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
蔡蔡完成签到,获得积分10
10秒前
科研通AI6应助好蓝采纳,获得10
11秒前
爆米花应助Anyyyyya采纳,获得10
11秒前
12秒前
13秒前
老迟到的羊完成签到 ,获得积分10
15秒前
阔达凝天发布了新的文献求助10
15秒前
Ava应助刘畅采纳,获得10
15秒前
15秒前
我不是王美嘉关注了科研通微信公众号
16秒前
1111发布了新的文献求助10
17秒前
Owen应助R7采纳,获得10
17秒前
17秒前
汪汪完成签到,获得积分10
18秒前
CodeCraft应助自由的乘云采纳,获得10
18秒前
qiao发布了新的文献求助10
19秒前
希望天下0贩的0应助LAH1018采纳,获得10
19秒前
苦哈哈发布了新的文献求助20
19秒前
虚幻的彤发布了新的文献求助10
19秒前
文献自由侠完成签到,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263289
求助须知:如何正确求助?哪些是违规求助? 4423914
关于积分的说明 13771219
捐赠科研通 4298936
什么是DOI,文献DOI怎么找? 2358826
邀请新用户注册赠送积分活动 1355088
关于科研通互助平台的介绍 1316312