已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

De Novo Design of Highly Stable Binders Targeting Dihydrofolate Reductase in Klebsiella pneumoniae

肺炎克雷伯菌 二氢叶酸还原酶 计算生物学 体内 生物 合理设计 大肠杆菌 生物化学 化学 生物技术 遗传学 基因
作者
Ihteshamul Haq,Faheem Anwar,Yigang Tong
出处
期刊:Proteins [Wiley]
标识
DOI:10.1002/prot.26835
摘要

ABSTRACT The study aims to design novel therapeutic inhibitors targeting the DHFR protein of Klebsiella pneumoniae . However, challenges like bacterial resistance to peptides and the limitations of computational models in predicting in vivo behavior must be addressed to refine the design process and improve therapeutic efficacy. This study employed deep learning‐based bioinformatics techniques to tackle these issues. The study involved retrieving DHFR protein sequences from Klebsiella strains, aligning them to identify conserved regions, and using deep learning models (OmegaFold, ProteinMPNN) to design de novo inhibitors. Cell‐penetrating peptide (CPP) motifs were added to enhance delivery, followed by allergenicity and thermal stability assessments. Molecular docking and dynamics simulations evaluated the binding affinity and stability of the inhibitors with DHFR. A conserved 60‐residue region was identified, and 60 de novo binders were generated, resulting in 7200 sequences. After allergenicity prediction and stability testing, 10 sequences with melting points near 70°C were shortlisted. Strong binding affinities were observed, especially for complexes 4OR7‐1787 and 4OR7‐1811, which remained stable in molecular dynamics simulations, indicating their potential as therapeutic agents. This study designed stable de novo peptides with cell‐penetrating properties and strong binding affinity to DHFR. Future steps include in vitro validation to assess their effectiveness in inhibiting DHFR, followed by in vivo studies to evaluate their therapeutic potential and stability. These peptides offer a promising strategy against Klebsiella pneumoniae infections, providing potential alternatives to current antibiotics. Experimental validation will be key to assessing their clinical relevance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
小满完成签到,获得积分10
3秒前
赵云发布了新的文献求助10
4秒前
4秒前
yx发布了新的文献求助10
5秒前
wanci应助yyy采纳,获得10
5秒前
6秒前
7秒前
涛1118发布了新的文献求助10
8秒前
上官雨时发布了新的文献求助10
8秒前
9秒前
DH完成签到 ,获得积分10
10秒前
Leo_发布了新的文献求助10
10秒前
深情安青应助BENRONG采纳,获得10
11秒前
变漂亮好难完成签到,获得积分10
11秒前
easonchen12312完成签到,获得积分10
12秒前
小米发布了新的文献求助10
12秒前
心想事成应助qu采纳,获得30
12秒前
开心快乐大王完成签到 ,获得积分10
13秒前
传奇3应助yx采纳,获得10
13秒前
华仔应助孤独的盼曼采纳,获得10
14秒前
浮游应助CYF采纳,获得10
15秒前
15秒前
所所应助研友_QnVQkL采纳,获得30
16秒前
17秒前
夏紊完成签到 ,获得积分10
19秒前
19秒前
20秒前
control发布了新的文献求助10
21秒前
21秒前
Tammy发布了新的文献求助10
22秒前
22秒前
张某某发布了新的文献求助10
23秒前
24秒前
yyy发布了新的文献求助10
24秒前
湘南之地发布了新的文献求助10
25秒前
BeBrave1028完成签到,获得积分10
25秒前
中单阿飞发布了新的文献求助10
26秒前
26秒前
ccc发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493402
求助须知:如何正确求助?哪些是违规求助? 4591431
关于积分的说明 14433835
捐赠科研通 4523958
什么是DOI,文献DOI怎么找? 2478514
邀请新用户注册赠送积分活动 1463494
关于科研通互助平台的介绍 1436350