Levering machine learning to distinguish between optimal and suboptimal basketball shooting forms

篮球 故障排除 计算机科学 人工智能 机器学习 历史 工程类 考古 可靠性工程
作者
Hrishikesh Deosthali,Anthony Cuturrufo
标识
DOI:10.59720/24-046
摘要

Basketball is a highly competitive sport and good shooting form is crucial to a player’s success. For high shooting accuracy, several body parts must be aligned, including proper leg positioning, elbow placement, hand posture, and shooting wrist curvature. With the progress in machine learning, Artificial Intelligence (AI) tools can be developed to provide feedback and personalized guidance on basketball shooting form. In this research, we compared Multilayer Perceptron (MLP), Recurrent Neural Networks (RNN), and Convolutional Neural Networks (CNN) to identify the most suitable model for integration into AI tools meant for basketball shooting form analysis. We hypothesized that CNN models will perform significantly better for basketball shooting form analysis than RNN or MLP models because CNN models are known to be better suited for Human Action Recognition (HAR) than other models. We evaluated five models to test our hypothesis - an MLP and an RNN model using Cartesian coordinates of body joints, an MLP model using angles of body joints, and two video-based CNN models using raw and cropped video data. Contrary to initial expectations, the accuracy of the MLP model with Cartesian coordinates of body joints outperformed the CNN model with cropped video (88.3% versus 83.3%). Since MLP models typically require less computational resources, they can be used to build efficient AI tools for basketball shooting form analysis in resource-constrained environments such as mobile phones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aura发布了新的文献求助10
刚刚
cindy完成签到,获得积分10
1秒前
高序发布了新的文献求助10
2秒前
lsy完成签到,获得积分10
3秒前
大尾猫完成签到,获得积分10
3秒前
3秒前
星星完成签到,获得积分20
3秒前
4秒前
4秒前
yznfly应助科研通管家采纳,获得30
4秒前
李健应助科研通管家采纳,获得10
4秒前
yznfly应助科研通管家采纳,获得30
4秒前
5秒前
辇道增七应助科研通管家采纳,获得10
5秒前
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
尔玉完成签到,获得积分10
7秒前
留胡子的紫槐完成签到,获得积分10
8秒前
shea完成签到,获得积分10
10秒前
鬼笔环肽发布了新的文献求助20
10秒前
10秒前
11秒前
时光完成签到,获得积分10
12秒前
苏黎世完成签到,获得积分10
13秒前
吴小胖完成签到,获得积分10
13秒前
Zzzz发布了新的文献求助10
14秒前
wendy_1006完成签到 ,获得积分10
15秒前
上官若男应助王小冉采纳,获得10
16秒前
我不是BOB完成签到,获得积分10
17秒前
utopia完成签到,获得积分10
17秒前
17秒前
阿莫西林胶囊完成签到,获得积分10
17秒前
17秒前
brier0218发布了新的文献求助10
18秒前
普鲁卡因完成签到,获得积分10
18秒前
18秒前
Wang完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954557
求助须知:如何正确求助?哪些是违规求助? 3500718
关于积分的说明 11100747
捐赠科研通 3231204
什么是DOI,文献DOI怎么找? 1786337
邀请新用户注册赠送积分活动 869958
科研通“疑难数据库(出版商)”最低求助积分说明 801737