PsychNet: Explainable Deep Neural Networks for Psychiatric Disorders and Mental Illness

特征提取 二元分类 多类分类 计算机科学 人工智能 认知 神经影像学 特征(语言学) 模式识别(心理学) 深度学习 人工神经网络 精神科 心理学 支持向量机 语言学 哲学
作者
Varanasi L. V. S. K. B. Kasyap,Chandra Mohan Dasari
标识
DOI:10.1109/cict56698.2022.9997832
摘要

Mental disorders are irreversible that cause disturbance in behavior, sleep, and emotional cognition. These are also considered as neurodegenerative diseases that highly impacts cognitive skills. Central gray matte analysis is inevitable to track brain activity. Complete cure of mental disorder is achieved if the early medication is prognised. Hence, there has been an interest in making computational models that can help psychiatrists to detect mental disorders in their pre-stages of it. However, there is a significant gap in improving prediction that can aid psychiatrists in better prognosis. The state-of-the-art models performed binary classification, as far the authors knowledge goes, multiclass classification of psychiatric disorders are not yet performed. To address these challenges, we propose a novel model, PsychNet that can classify and track down the psychiatric diseases in the early stages. PsychNet is built with three modules. In the first, the binary classification is performed to diversify Alzheimer's and non-Alzheimer's images. The Psy-chN et enhanced classification and detection accuracy through fine tuning. Second, a novel feature extraction along with noise removal techniques are proposed using the RogerHat filters for the multi-class classification of the Alzheimer's disease types. A novel feature extraction technique is proposed to classify because of the nonlinear high complex neuroimaging data. The model's explainability is carried out in the final module by detecting the diseased area using automated features and generating a bounding box around the affected area. PsychNet surpasses the existing models to obtain classification and detection accuracies of 92% and 94%, respectively, on the dataset of fMRI scan images. The proposed model achieved 93.72 average area under the receiver operating characteristic curve (AUCROC) for balanced diseased datasets using l0-fold cross-validation. The same model architecture can also be used to detect mental disorders over the genotypes and EEG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18062677029完成签到 ,获得积分10
刚刚
执着的导师完成签到,获得积分10
1秒前
诸醉山完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
danielbbbb完成签到,获得积分20
2秒前
2秒前
2秒前
3秒前
hui发布了新的文献求助10
3秒前
KYDD发布了新的文献求助10
4秒前
4秒前
brainxue完成签到,获得积分10
4秒前
5秒前
张张完成签到,获得积分10
5秒前
冰河发布了新的文献求助20
6秒前
华仔应助李书荣采纳,获得10
7秒前
小蜡笔发布了新的文献求助10
7秒前
CipherSage应助快乐小狗采纳,获得10
7秒前
大白发布了新的文献求助10
7秒前
YE发布了新的文献求助10
8秒前
8秒前
直击灵魂完成签到,获得积分10
8秒前
动漫大师发布了新的文献求助10
9秒前
Amiao应助跳跃的邪欢采纳,获得10
9秒前
songlf23发布了新的文献求助10
9秒前
贵老师关注了科研通微信公众号
9秒前
9秒前
ru完成签到 ,获得积分10
9秒前
小飞完成签到,获得积分10
9秒前
10秒前
SciGPT应助快乐的心情采纳,获得10
10秒前
DL完成签到,获得积分10
11秒前
OldAntique完成签到,获得积分10
11秒前
玛卡巴卡的石头完成签到,获得积分10
11秒前
东北信风完成签到,获得积分10
12秒前
深情安青应助念想采纳,获得10
12秒前
13秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790524
求助须知:如何正确求助?哪些是违规求助? 3335294
关于积分的说明 10274188
捐赠科研通 3051766
什么是DOI,文献DOI怎么找? 1674822
邀请新用户注册赠送积分活动 802870
科研通“疑难数据库(出版商)”最低求助积分说明 760956