A Content-Adaptive Hierarchical Deep Learning Model for Detecting Arbitrary-Oriented Road Surface Elements Using MLS Point Clouds

计算机科学 偏移量(计算机科学) 路面 点云 人工智能 特征(语言学) 最小边界框 计算机视觉 曲面(拓扑) 级联 模式识别(心理学) 图像(数学) 工程类 数学 哲学 化学工程 土木工程 语言学 程序设计语言 几何学
作者
Siyun Chen,Zhenxin Zhang,Hao Ma,Liqiang Zhang,Ruofei Zhong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:2
标识
DOI:10.1109/tgrs.2023.3234303
摘要

Accurate and automatic detection of road surface element (such as road marking or manhole cover) information is the basis and key to many applications. To efficiently obtain the information of road surface element, we propose a content-adaptive hierarchical deep learning model to detect arbitrary-oriented road surface elements from mobile laser scanning (MLS) point clouds. In the model, we design a densely connected feature integration module (DCFM) to connect and reorganize feature maps of each stage in the backbone network. Besides, we propose a hierarchical prediction module (HPM) to innovatively use the reorganized feature maps to recognize different types of road surface elements, and thus, semantic information of road surface element can be adaptively expressed on multilevel feature maps. We also add a cascade structure (CS) in the head of model to detect the target efficiently, which can learn the offset between the predicted minimum bounding box of road surface element and ground truth. In experiments, we prove that the proposed method mainly contributed by HPM can maintain robust detection performance, even in the cases of unbalanced category number or overlapping of road surface elements. The experiments also prove that the proposed DCFM can improve the recognition effects of small targets. The CS for predicting boundary offset can detect each target more accurately. We also integrate the designed modules into some rotation detectors, e.g., the EAST and R3Det, and achieve the state-of-the-art results in three road scenes with different categories and uneven distribution of road surface elements, which further shows the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰魂应助小宋采纳,获得10
1秒前
2秒前
陈半喆完成签到,获得积分10
2秒前
Doctor_Peng完成签到,获得积分10
2秒前
lizhen发布了新的文献求助10
3秒前
Cheryy发布了新的文献求助10
3秒前
小颖发布了新的文献求助10
4秒前
小杨发布了新的文献求助10
4秒前
傅荣轩完成签到,获得积分10
4秒前
HR112应助wxyes采纳,获得10
5秒前
6秒前
abys发布了新的文献求助10
6秒前
6秒前
科研通AI5应助小月986采纳,获得10
7秒前
8秒前
Jasper应助吴晓敏采纳,获得10
8秒前
靓丽访枫发布了新的文献求助10
8秒前
干净的青梦完成签到,获得积分10
10秒前
Hello应助迷人的帅哥采纳,获得10
10秒前
11秒前
顾矜应助Yi采纳,获得10
11秒前
phj完成签到 ,获得积分10
12秒前
藏羚羊完成签到,获得积分10
12秒前
nzz完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
琮博发布了新的文献求助10
13秒前
12345发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
18秒前
20秒前
我不爱池鱼应助wxyes采纳,获得10
20秒前
xxxxx完成签到 ,获得积分10
21秒前
安寻烟完成签到,获得积分10
21秒前
韭黄发布了新的文献求助10
21秒前
21秒前
lk发布了新的文献求助10
21秒前
小江完成签到,获得积分10
23秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867412
求助须知:如何正确求助?哪些是违规求助? 3409750
关于积分的说明 10664834
捐赠科研通 3133968
什么是DOI,文献DOI怎么找? 1728716
邀请新用户注册赠送积分活动 833058
科研通“疑难数据库(出版商)”最低求助积分说明 780550