Predicting the Structural Colors of Films of Disordered Photonic Balls

光子学 结构着色 材料科学 散射 光子晶体 光学 光子超材料 光散射 球(数学) 纳米孔 光电子学 纳米技术 物理 几何学 数学
作者
Anna B. Stephenson,Ming Xiao,Victoria Hwang,Liangliang Qu,Paul A. Odorisio,Michael G. Burke,Keith Task,Ted Deisenroth,Solomon Barkley,Rupa Hiremath Darji,Vinothan N. Manoharan
出处
期刊:ACS Photonics [American Chemical Society]
卷期号:10 (1): 58-70 被引量:4
标识
DOI:10.1021/acsphotonics.2c00892
摘要

Photonic balls are spheres tens of micrometers in diameter containing assemblies of nanoparticles or nanopores with a spacing comparable to the wavelength of light. When these nanoscale features are disordered, but still correlated, the photonic balls can show structural color with low angle-dependence. Their colors, combined with the ability to add them to a liquid formulation, make photonic balls a promising new type of pigment particle for paints, coatings, and other applications. However, it is challenging to predict the color of materials made from photonic balls because the sphere geometry and multiple scattering must be accounted for. To address these challenges, we develop a multiscale modeling approach involving Monte Carlo simulations of multiple scattering at two different scales: we simulate multiple scattering and absorption within a photonic ball and then use the results to simulate multiple scattering and absorption in a film of photonic balls. After validating against experimental spectra, we use the model to show that films of photonic balls scatter light in fundamentally different ways than do homogeneous films of nanopores or nanoparticles, because of their increased surface area and refraction at the interfaces of the balls. Both effects tend to sharply reduce color saturation relative to a homogeneous nanostructured film. We show that saturated colors can be achieved by placing an absorber directly in the photonic balls and mitigating surface roughness. With these design rules, we show that photonic-ball films have an advantage over homogeneous nanostructured films: their colors are even less dependent on the angle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Niniiii完成签到,获得积分10
刚刚
乐观小之发布了新的文献求助10
1秒前
梦在彼岸发布了新的文献求助10
2秒前
柳琰完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
风清扬应助ximei采纳,获得10
4秒前
5秒前
5秒前
sixieryu发布了新的文献求助10
6秒前
五十发布了新的文献求助10
6秒前
ocdspkss完成签到,获得积分10
7秒前
8秒前
9秒前
打打应助Dora采纳,获得10
10秒前
CJX发布了新的文献求助10
10秒前
淡淡的雪完成签到,获得积分10
10秒前
10秒前
21完成签到 ,获得积分10
11秒前
12秒前
LaTeXer给LSH970829的求助进行了留言
12秒前
沐沐溪三清完成签到,获得积分10
12秒前
13秒前
ximei完成签到,获得积分10
14秒前
15秒前
王木木发布了新的文献求助10
15秒前
火山羊完成签到,获得积分10
16秒前
yyygc发布了新的文献求助10
16秒前
LIJIngcan完成签到 ,获得积分10
17秒前
西门子云完成签到,获得积分10
17秒前
17秒前
iNk应助机智采纳,获得20
18秒前
18秒前
18秒前
思源应助五十采纳,获得10
18秒前
18秒前
11完成签到,获得积分10
20秒前
蓝桉发布了新的文献求助10
21秒前
22秒前
科研通AI2S应助负责的方盒采纳,获得30
22秒前
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4211987
求助须知:如何正确求助?哪些是违规求助? 3746077
关于积分的说明 11787368
捐赠科研通 3414081
什么是DOI,文献DOI怎么找? 1873448
邀请新用户注册赠送积分活动 927878
科研通“疑难数据库(出版商)”最低求助积分说明 837298