已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification and prediction of Parkinson’s disease subtypes and progression using machine learning in two cohorts

疾病 帕金森病 队列 医学 生物标志物 内科学 肿瘤科 临床试验 机器学习 生物信息学 生物 计算机科学 生物化学
作者
Anant Dadu,Vipul Satone,Rachneet Kaur,Sayed Hadi Hashemi,Hampton L. Leonard,Hirotaka Iwaki,Mary B. Makarious,Kimberley Billingsley,Sara Bandrés‐Ciga,Lana Sargent,Alastair J. Noyce,Ali Daneshmand,Cornelis Blauwendraat,Kenneth Marek,Sonja W. Scholz,Andrew Singleton,Mike A. Nalls,Roy H. Campbell,Faraz Faghri
出处
期刊:npj Parkinson's disease 卷期号:8 (1) 被引量:39
标识
DOI:10.1038/s41531-022-00439-z
摘要

The clinical manifestations of Parkinson's disease (PD) are characterized by heterogeneity in age at onset, disease duration, rate of progression, and the constellation of motor versus non-motor features. There is an unmet need for the characterization of distinct disease subtypes as well as improved, individualized predictions of the disease course. We used unsupervised and supervised machine learning methods on comprehensive, longitudinal clinical data from the Parkinson's Disease Progression Marker Initiative (n = 294 cases) to identify patient subtypes and to predict disease progression. The resulting models were validated in an independent, clinically well-characterized cohort from the Parkinson's Disease Biomarker Program (n = 263 cases). Our analysis distinguished three distinct disease subtypes with highly predictable progression rates, corresponding to slow, moderate, and fast disease progression. We achieved highly accurate projections of disease progression 5 years after initial diagnosis with an average area under the curve (AUC) of 0.92 (95% CI: 0.95 ± 0.01) for the slower progressing group (PDvec1), 0.87 ± 0.03 for moderate progressors, and 0.95 ± 0.02 for the fast-progressing group (PDvec3). We identified serum neurofilament light as a significant indicator of fast disease progression among other key biomarkers of interest. We replicated these findings in an independent cohort, released the analytical code, and developed models in an open science manner. Our data-driven study provides insights to deconstruct PD heterogeneity. This approach could have immediate implications for clinical trials by improving the detection of significant clinical outcomes. We anticipate that machine learning models will improve patient counseling, clinical trial design, and ultimately individualized patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小竖完成签到,获得积分10
3秒前
4秒前
无风完成签到 ,获得积分10
5秒前
蘑菇完成签到 ,获得积分10
7秒前
情怀应助和谐的芷文采纳,获得10
8秒前
9秒前
开心采白发布了新的文献求助10
12秒前
14秒前
和谐的芷文完成签到,获得积分10
15秒前
Eason_C完成签到 ,获得积分10
17秒前
牛超完成签到 ,获得积分10
18秒前
香蕉觅云应助刘轩瑀采纳,获得10
18秒前
hyf完成签到,获得积分10
18秒前
19秒前
里旺完成签到 ,获得积分10
20秒前
20秒前
可靠的雪碧完成签到,获得积分10
22秒前
科研通AI6应助maofeng采纳,获得10
24秒前
momo发布了新的文献求助10
24秒前
984295567完成签到,获得积分10
24秒前
25秒前
25秒前
26秒前
zyb完成签到 ,获得积分10
29秒前
吴金芮完成签到,获得积分10
29秒前
30秒前
31秒前
小象完成签到,获得积分10
31秒前
隐形曼青应助沐兮采纳,获得10
33秒前
YJO10发布了新的文献求助10
33秒前
小凯完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
36秒前
37秒前
hhhxxx发布了新的文献求助10
37秒前
40秒前
momo完成签到,获得积分10
41秒前
42秒前
慕玖淇完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525102
关于积分的说明 14100961
捐赠科研通 4438850
什么是DOI,文献DOI怎么找? 2436526
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504