亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification and prediction of Parkinson’s disease subtypes and progression using machine learning in two cohorts

疾病 帕金森病 队列 医学 生物标志物 内科学 肿瘤科 临床试验 机器学习 生物信息学 生物 计算机科学 生物化学
作者
Anant Dadu,Vipul Satone,Rachneet Kaur,Sayed Hadi Hashemi,Hampton L. Leonard,Hirotaka Iwaki,Mary B. Makarious,Kimberley Billingsley,Sara Bandrés‐Ciga,Lana Sargent,Alastair J. Noyce,Ali Daneshmand,Cornelis Blauwendraat,Kenneth Marek,Sonja W. Scholz,Andrew Singleton,Mike A. Nalls,Roy H. Campbell,Faraz Faghri
出处
期刊:npj Parkinson's disease 卷期号:8 (1) 被引量:39
标识
DOI:10.1038/s41531-022-00439-z
摘要

The clinical manifestations of Parkinson's disease (PD) are characterized by heterogeneity in age at onset, disease duration, rate of progression, and the constellation of motor versus non-motor features. There is an unmet need for the characterization of distinct disease subtypes as well as improved, individualized predictions of the disease course. We used unsupervised and supervised machine learning methods on comprehensive, longitudinal clinical data from the Parkinson's Disease Progression Marker Initiative (n = 294 cases) to identify patient subtypes and to predict disease progression. The resulting models were validated in an independent, clinically well-characterized cohort from the Parkinson's Disease Biomarker Program (n = 263 cases). Our analysis distinguished three distinct disease subtypes with highly predictable progression rates, corresponding to slow, moderate, and fast disease progression. We achieved highly accurate projections of disease progression 5 years after initial diagnosis with an average area under the curve (AUC) of 0.92 (95% CI: 0.95 ± 0.01) for the slower progressing group (PDvec1), 0.87 ± 0.03 for moderate progressors, and 0.95 ± 0.02 for the fast-progressing group (PDvec3). We identified serum neurofilament light as a significant indicator of fast disease progression among other key biomarkers of interest. We replicated these findings in an independent cohort, released the analytical code, and developed models in an open science manner. Our data-driven study provides insights to deconstruct PD heterogeneity. This approach could have immediate implications for clinical trials by improving the detection of significant clinical outcomes. We anticipate that machine learning models will improve patient counseling, clinical trial design, and ultimately individualized patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小羊完成签到,获得积分10
1秒前
Akim应助朴实的成风采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
典雅问寒应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
7秒前
有趣的银完成签到,获得积分10
13秒前
我是老大应助chelsea采纳,获得10
13秒前
大模型应助空空伊采纳,获得10
28秒前
xly完成签到,获得积分10
29秒前
大渡河完成签到 ,获得积分10
35秒前
43秒前
43秒前
smm完成签到 ,获得积分10
52秒前
酷波er应助调皮帆布鞋采纳,获得10
1分钟前
恰你眉目如昨完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
心灵美鑫完成签到 ,获得积分10
1分钟前
chelsea发布了新的文献求助10
1分钟前
1分钟前
1分钟前
朴实的成风完成签到,获得积分10
1分钟前
典雅问寒应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Demi_Ming完成签到,获得积分10
2分钟前
HUO完成签到 ,获得积分10
2分钟前
zgz732完成签到 ,获得积分10
2分钟前
务实书包完成签到,获得积分10
2分钟前
冇_完成签到 ,获得积分10
2分钟前
垚祎完成签到 ,获得积分10
2分钟前
HY完成签到 ,获得积分10
2分钟前
羞涩的文轩完成签到 ,获得积分10
2分钟前
脑洞疼应助leeyc采纳,获得10
2分钟前
激动的晓筠完成签到 ,获得积分10
2分钟前
无语的安白应助涛涛采纳,获得10
2分钟前
科研通AI5应助山竹采纳,获得10
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843176
求助须知:如何正确求助?哪些是违规求助? 3385441
关于积分的说明 10540498
捐赠科研通 3106019
什么是DOI,文献DOI怎么找? 1710846
邀请新用户注册赠送积分活动 823771
科研通“疑难数据库(出版商)”最低求助积分说明 774264