亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adjusted Analyses in Studies Addressing Therapy and Harm

观察研究 医学 工具变量 结果(博弈论) 倾向得分匹配 随机化 干预(咨询) 选择偏差 危害 随机对照试验 计量经济学 统计 内科学 心理学 精神科 病理 数理经济学 社会心理学 经济 数学
作者
Thomas Agoritsas,Arnaud Merglen,Nilay D. Shah,Martin O’Donnell,Gordon Guyatt
出处
期刊:JAMA [American Medical Association]
卷期号:317 (7): 748-748 被引量:121
标识
DOI:10.1001/jama.2016.20029
摘要

Observational studies almost always have bias because prognostic factors are unequally distributed between patients exposed or not exposed to an intervention. The standard approach to dealing with this problem is adjusted or stratified analysis. Its principle is to use measurement of risk factors to create prognostically homogeneous groups and to combine effect estimates across groups. The purpose of this Users’ Guide is to introduce readers to fundamental concepts underlying adjustment as a way of dealing with prognostic imbalance and to the basic principles and relative trustworthiness of various adjustment strategies. One alternative to the standard approach is propensity analysis, in which groups are matched according to the likelihood of membership in exposed or unexposed groups. Propensity methods can deal with multiple prognostic factors, even if there are relatively few patients having outcome events. However, propensity methods do not address other limitations of traditional adjustment: investigators may not have measured all relevant prognostic factors (or not accurately), and unknown factors may bias the results. A second approach, instrumental variable analysis, relies on identifying a variable associated with the likelihood of receiving the intervention but not associated with any prognostic factor or with the outcome (other than through the intervention); this could mimic randomization. However, as with assumptions of other adjustment approaches, it is never certain if an instrumental variable analysis eliminates bias. Although all these approaches can reduce the risk of bias in observational studies, none replace the balance of both known and unknown prognostic factors offered by randomization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fuueer完成签到 ,获得积分10
43秒前
姚李发布了新的文献求助10
52秒前
姚李完成签到,获得积分10
1分钟前
2分钟前
zhaosheng发布了新的文献求助10
2分钟前
2分钟前
Lucas应助zhaosheng采纳,获得10
2分钟前
2分钟前
iii发布了新的文献求助10
2分钟前
迷路炎彬发布了新的文献求助10
2分钟前
Orange应助迷路炎彬采纳,获得10
2分钟前
iii发布了新的文献求助50
2分钟前
3分钟前
科研通AI2S应助龚幻梦采纳,获得10
3分钟前
去去去去发布了新的文献求助10
3分钟前
情怀应助去去去去采纳,获得10
3分钟前
3分钟前
yangyang完成签到,获得积分20
3分钟前
yangyang发布了新的文献求助10
3分钟前
漠北完成签到,获得积分10
4分钟前
漠北发布了新的文献求助10
4分钟前
深情安青应助漠北采纳,获得10
4分钟前
zhl完成签到,获得积分10
5分钟前
5分钟前
6分钟前
Corn_Dog发布了新的文献求助10
6分钟前
彭于晏应助Corn_Dog采纳,获得10
6分钟前
6分钟前
Corn_Dog发布了新的文献求助10
6分钟前
iii完成签到,获得积分10
8分钟前
星辰大海应助iii采纳,获得50
8分钟前
8分钟前
三人水明完成签到 ,获得积分10
9分钟前
xuexinxin完成签到,获得积分10
10分钟前
11分钟前
去去去去发布了新的文献求助10
11分钟前
Vino完成签到,获得积分10
11分钟前
香蕉觅云应助去去去去采纳,获得10
11分钟前
科研通AI2S应助GAOGONGZI采纳,获得10
12分钟前
13分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Achieving 99% link uptime on a fleet of 100G space laser inter-satellite links in LEO 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 700
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3090960
求助须知:如何正确求助?哪些是违规求助? 2743271
关于积分的说明 7572856
捐赠科研通 2393910
什么是DOI,文献DOI怎么找? 1269496
科研通“疑难数据库(出版商)”最低求助积分说明 614345
版权声明 598756