径向基函数
插值(计算机图形学)
移动最小二乘法
正则化无网格法
基函数
数学
多项式基
奇点
奇异边界法
多项式的
多项式插值
应用数学
无网格法
点(几何)
边界(拓扑)
功能(生物学)
基础(线性代数)
领域(数学分析)
数学分析
趋同(经济学)
计算机科学
几何学
线性插值
边界元法
有限元法
人工智能
物理
运动(物理)
生物
进化生物学
人工神经网络
热力学
经济增长
经济
作者
Jianguo Wang,G. R. Liu
摘要
Abstract A point interpolation meshless method is proposed based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity associated with the meshless methods based on only the polynomial basis. This non‐singularity is useful in constructing well‐performed shape functions. Furthermore, the interpolation function obtained passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshless methods based on the moving least‐squares approximation. In addition, the partial derivatives of shape functions are easily obtained, thus improving computational efficiency. Examples on curve/surface fittings and solid mechanics problems show that the accuracy and convergence rate of the present method is high. Copyright © 2002 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI