An efficient constraint handling method for genetic algorithms

惩罚法 锦标赛选拔 渡线 可行区 约束优化 计算机科学 算法 最优化问题 操作员(生物学) 约束(计算机辅助设计) 功能(生物学) 数学优化 数学 遗传算法 几何学 人工智能 进化生物学 转录因子 生物 基因 生物化学 抑制因子 化学
作者
Kalyanmoy Deb
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:186 (2-4): 311-338 被引量:3657
标识
DOI:10.1016/s0045-7825(99)00389-8
摘要

Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using genetic algorithms (GAs) or classical optimization methods, penalty function methods have been the most popular approach, because of their simplicity and ease of implementation. However, since the penalty function approach is generic and applicable to any type of constraint (linear or nonlinear), their performance is not always satisfactory. Thus, researchers have developed sophisticated penalty functions specific to the problem at hand and the search algorithm used for optimization. However, the most difficult aspect of the penalty function approach is to find appropriate penalty parameters needed to guide the search towards the constrained optimum. In this paper, GA's population-based approach and ability to make pair-wise comparison in tournament selection operator are exploited to devise a penalty function approach that does not require any penalty parameter. Careful comparisons among feasible and infeasible solutions are made so as to provide a search direction towards the feasible region. Once sufficient feasible solutions are found, a niching method (along with a controlled mutation operator) is used to maintain diversity among feasible solutions. This allows a real-parameter GA's crossover operator to continuously find better feasible solutions, gradually leading the search near the true optimum solution. GAs with this constraint handling approach have been tested on nine problems commonly used in the literature, including an engineering design problem. In all cases, the proposed approach has been able to repeatedly find solutions closer to the true optimum solution than that reported earlier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111111完成签到,获得积分20
刚刚
光亮天抒完成签到,获得积分10
刚刚
隐形曼青应助LiuShenglan采纳,获得10
1秒前
1秒前
遇见胡桃夹子完成签到,获得积分10
1秒前
2秒前
秘密发布了新的文献求助10
3秒前
RYL发布了新的文献求助10
3秒前
3秒前
悦耳的万天完成签到,获得积分10
4秒前
星星发布了新的文献求助10
4秒前
ottsannn发布了新的文献求助10
5秒前
yuyu发布了新的文献求助30
5秒前
小潘不潘完成签到,获得积分10
5秒前
今天你学习了吗完成签到,获得积分10
5秒前
7秒前
8秒前
8秒前
blueming发布了新的文献求助10
8秒前
田様应助朱事顺利采纳,获得10
9秒前
灼萤栖木完成签到,获得积分10
9秒前
9秒前
11秒前
zhao完成签到,获得积分10
11秒前
俊逸的友安完成签到,获得积分20
11秒前
11秒前
xiaoli完成签到,获得积分10
11秒前
MrPao发布了新的文献求助10
12秒前
12秒前
12秒前
zzholiver发布了新的文献求助10
13秒前
小鹿呀发布了新的文献求助10
13秒前
陈琼5完成签到,获得积分10
16秒前
ottsannn完成签到,获得积分10
16秒前
菏西发布了新的文献求助10
17秒前
SYLH应助具体问题具体分析采纳,获得10
17秒前
LiuShenglan发布了新的文献求助10
17秒前
青衣北风发布了新的文献求助10
17秒前
20秒前
hongsu完成签到 ,获得积分10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949393
求助须知:如何正确求助?哪些是违规求助? 3494756
关于积分的说明 11073795
捐赠科研通 3225389
什么是DOI,文献DOI怎么找? 1783021
邀请新用户注册赠送积分活动 867318
科研通“疑难数据库(出版商)”最低求助积分说明 800739