马氏距离
异常检测
离群值
数学
估计员
协方差
稳健统计
对角线的
算法
协方差矩阵
统计
数据挖掘
模式识别(心理学)
人工智能
计算机科学
几何学
作者
Kwangil Ro,Changliang Zou,Zhaojun Wang,Guosheng Yin
出处
期刊:Biometrika
[Oxford University Press]
日期:2015-06-07
卷期号:102 (3): 589-599
被引量:53
标识
DOI:10.1093/biomet/asv021
摘要
Outlier detection is an integral component of statistical modelling and estimation. For high-dimensional data, classical methods based on the Mahalanobis distance are usually not applicable. We propose an outlier detection procedure that replaces the classical minimum covariance determinant estimator with a high-breakdown minimum diagonal product estimator. The cut-off value is obtained from the asymptotic distribution of the distance, which enables us to control the Type I error and deliver robust outlier detection. Simulation studies show that the proposed method behaves well for high-dimensional data.
科研通智能强力驱动
Strongly Powered by AbleSci AI