纳米孔
石墨烯
材料科学
纳米技术
纳米材料
离子键合
碱基
硅
光电子学
纳米线
DNA
离子
化学
生物化学
有机化学
作者
Amir Barati Farimani,Kyoungmin Min,N. R. Aluru
出处
期刊:ACS Nano
[American Chemical Society]
日期:2014-07-09
卷期号:8 (8): 7914-7922
被引量:329
摘要
Nanopore-based DNA sequencing has led to fast and high-resolution recognition and detection of DNA bases. Solid-state and biological nanopores have low signal-to-noise ratio (SNR) (< 10) and are generally too thick (> 5 nm) to be able to read at single-base resolution. A nanopore in graphene, a 2-D material with sub-nanometer thickness, has a SNR of ∼3 under DNA ionic current. In this report, using atomistic and quantum simulations, we find that a single-layer MoS2 is an extraordinary material (with a SNR > 15) for DNA sequencing by two competing technologies (i.e., nanopore and nanochannel). A MoS2 nanopore shows four distinct ionic current signals for single-nucleobase detection with low noise. In addition, a single-layer MoS2 shows a characteristic change/response in the total density of states for each base. The band gap of MoS2 is significantly changed compared to other nanomaterials (e.g., graphene, h-BN, and silicon nanowire) when bases are placed on top of the pristine MoS2 and armchair MoS2 nanoribbon, thus making MoS2 a promising material for base detection via transverse current tunneling measurement. MoS2 nanopore benefits from a craftable pore architecture (combination of Mo and S atoms at the edge) which can be engineered to obtain the optimum sequencing signals.
科研通智能强力驱动
Strongly Powered by AbleSci AI