Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning

断层(地质) 人工智能 深度学习 计算机科学 编码器 学习迁移 钥匙(锁) 领域(数学分析) 机器学习 工程类 数据挖掘 模式识别(心理学) 地质学 数学分析 操作系统 计算机安全 地震学 数学
作者
Min Xia,Haidong Shao,Darren L. Williams,Siliang Lu,Lei Shu,Clarence W. de Silva
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:215: 107938-107938 被引量:229
标识
DOI:10.1016/j.ress.2021.107938
摘要

Digital twin (DT) is emerging as a key technology for smart manufacturing. The high fidelity DT model of the physical assets can produce system performance data that is close to reality, which provides remarkable opportunities for machine fault diagnosis when the measured fault condition data are insufficient. This paper presents an intelligent fault diagnosis framework for machinery based on DT and deep transfer learning. First, the DT model of the machine is built by establishing the simulation model and with further updating through continuously measured data from the physical asset. Second, all important machine conditions can be simulated from the built DT. Third, a new-type deep structure based on novel sparse de-noising auto-encoder (NSDAE) is developed and pre-trained with condition data from the source domain, as generated from the DT. Then, to achieve accurate machine fault diagnosis with possible variations in working conditions and system characteristics, the pre-trained NSDAE is fine-tuned using parameter transfer with only one sample from the target domain. The presented method is validated through a case study of triplex pump fault diagnosis. The experimental results demonstrate that the proposed method achieves intelligent fault diagnosis with a limited amount of measured data and outperforms other state-of-the-art data-driven methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彪壮的茗发布了新的文献求助30
1秒前
1秒前
3秒前
orixero应助Jolin采纳,获得10
3秒前
3秒前
3秒前
Eliauk完成签到 ,获得积分10
4秒前
4秒前
你键盘哥完成签到,获得积分10
4秒前
5秒前
Akim应助雨田采纳,获得10
5秒前
豆豆发布了新的文献求助30
6秒前
如约而至发布了新的文献求助10
6秒前
yiyiluo发布了新的文献求助10
7秒前
小二郎应助唐笑采纳,获得10
8秒前
9秒前
9秒前
9秒前
熊宇完成签到,获得积分10
10秒前
Owen应助mmnn采纳,获得10
12秒前
14秒前
14秒前
15秒前
17秒前
19秒前
20秒前
20秒前
yang发布了新的文献求助10
20秒前
科研通AI5应助Angel采纳,获得10
20秒前
可靠世平发布了新的文献求助10
21秒前
AAAAA发布了新的文献求助10
21秒前
21秒前
xxx完成签到,获得积分10
21秒前
23秒前
彭于晏应助yiyiluo采纳,获得10
23秒前
艾佳发布了新的文献求助10
23秒前
23秒前
23秒前
VVValentin发布了新的文献求助10
24秒前
Jolin发布了新的文献求助10
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807102
求助须知:如何正确求助?哪些是违规求助? 3351867
关于积分的说明 10356328
捐赠科研通 3067877
什么是DOI,文献DOI怎么找? 1684778
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765767