Graph Domain Adaptation: A Generative View

生成语法 计算机科学 图形 适应(眼睛) 域适应 领域(数学分析) 人工智能 理论计算机科学 数学 生物 分类器(UML) 数学分析 神经科学
作者
Ruichu Cai,Fengzhu Wu,Zijian Li,Pengfei Wei,Lingling Yi,Kun Zhang
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (3): 1-24 被引量:7
标识
DOI:10.1145/3631712
摘要

Recent years have witnessed tremendous interest in deep learning on graph-structured data. Due to the high cost of collecting labeled graph-structured data, domain adaptation is important to supervised graph learning tasks with limited samples. However, current graph domain adaptation methods are generally adopted from traditional domain adaptation tasks, and the properties of graph-structured data are not well utilized. For example, the observed social networks on different platforms are controlled not only by the different crowds or communities but also by domain-specific policies and background noise. Based on these properties in graph-structured data, we first assume that the graph-structured data generation process is controlled by three independent types of latent variables, i.e., the semantic latent variables, the domain latent variables, and the random latent variables. Based on this assumption, we propose a disentanglement-based unsupervised domain adaptation method for the graph-structured data, which applies variational graph auto-encoders to recover these latent variables and disentangles them via three supervised learning modules. Extensive experimental results on two real-world datasets in the graph classification task reveal that our method not only significantly outperforms the traditional domain adaptation methods and the disentangled-based domain adaptation methods but also outperforms the state-of-the-art graph domain adaptation algorithms. The code is available at https://github.com/rynewu224/GraphDA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
serenity711完成签到 ,获得积分10
刚刚
谷粱靖柔完成签到,获得积分10
1秒前
gyx完成签到 ,获得积分10
1秒前
yuzhang312完成签到 ,获得积分10
2秒前
FloppyWow完成签到 ,获得积分10
3秒前
ly完成签到,获得积分10
3秒前
苹果发夹完成签到 ,获得积分10
3秒前
Alone离殇完成签到 ,获得积分10
5秒前
几携完成签到 ,获得积分10
6秒前
刘五十七完成签到 ,获得积分10
7秒前
8秒前
8秒前
缥缈代丝完成签到 ,获得积分10
9秒前
点点完成签到 ,获得积分10
10秒前
江月年完成签到 ,获得积分10
10秒前
12秒前
14秒前
fanfan完成签到 ,获得积分10
15秒前
666星爷完成签到,获得积分10
19秒前
加油完成签到 ,获得积分10
22秒前
我爱学习完成签到,获得积分10
25秒前
26秒前
donson完成签到,获得积分10
26秒前
28秒前
Jeffrey完成签到,获得积分10
29秒前
32秒前
不想洗碗完成签到 ,获得积分10
36秒前
SY15732023811完成签到 ,获得积分10
37秒前
和谐的火龙果完成签到,获得积分10
40秒前
洽洽瓜子shine完成签到,获得积分10
42秒前
iShine完成签到 ,获得积分10
42秒前
严念桃完成签到,获得积分10
43秒前
ada完成签到,获得积分10
48秒前
50秒前
One完成签到 ,获得积分10
50秒前
轩辕剑身完成签到,获得积分10
50秒前
忧虑的花卷完成签到,获得积分10
52秒前
贪玩的醉波完成签到,获得积分10
59秒前
卡卡完成签到 ,获得积分10
1分钟前
优雅的平安完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792575
求助须知:如何正确求助?哪些是违规求助? 3336794
关于积分的说明 10282208
捐赠科研通 3053626
什么是DOI,文献DOI怎么找? 1675672
邀请新用户注册赠送积分活动 803659
科研通“疑难数据库(出版商)”最低求助积分说明 761495