Significance Lymphatic vessel networks are important for various biological processes; thus, incorporating them into engineered constructs can have both research and clinical implications. Engineered lymphatic vessels can improve biomimicry and functionality of in vitro tissue assays and serve as a treatment for various diseases associated with impaired lymphatic function. In this work, we created functional engineered lymphatic vessels that anastomosed to the host lymphatic system postimplantation. We investigated the effect of supporting cells, cell-secreted extracellular matrix, and mechanical forces on lymphatic vessel formation within engineered constructs. Interestingly, lymphatic vasculature responded differently to cyclic stretch compared to blood vasculature. This phenomenon opens up an avenue for investigating the variability of cellular responses to mechanical stimulation.