热液循环
磨细高炉矿渣
沸石
材料科学
原材料
熔渣(焊接)
水热合成
核化学
化学工程
水热反应
矿物学
冶金
化学
催化作用
生物化学
有机化学
水泥
工程类
作者
Changxin Li,Xiang Li,Qingwu Zhang,Li Li,Shuai Wang
出处
期刊:Minerals
[Multidisciplinary Digital Publishing Institute]
日期:2021-10-21
卷期号:11 (11): 1160-1160
被引量:2
摘要
This study was performed to investigate the effects of reaction temperature on the alkaline fusion-hydrothermal preparation of hydroxyapatite-zeolite (HAP-ZE) using blast furnace slag (BFS) as raw material. Firstly, HAP-ZE samples were obtained under various reaction temperatures; then the analysis was carried out utilizing XRD, FT-IR, BET/BJH, XRF, FE-SEM and EDX. The results reflect that the optimum reaction temperature for preparing HAP-ZE from blast furnace slag (BFS) using alkaline fusion-hydrothermal treatment is around 100 °C. The HAP-ZE synthesized at 100 °C had the largest specific surface area (SSA) value. Under 100 °C aging, the main phases in HAP-ZE were zeolite and HAP with the average SSA is 44.22 m2·g−1. Molar ratio of Ca/P, Si/Al and Na/Al is 1.61, 1.31, 1.75, respectively. Additionally, HAP-ZE crystals with a diameter of about 500 nm form an open frame structure with coral surface morphology could be clearly observed at 100 °C. The observed surface morphology feature agrees well with that for HAP-ZE previously reported, again elucidating the successful formation of HAP-ZE.
科研通智能强力驱动
Strongly Powered by AbleSci AI