Machine learning assisted composition effective design for precipitation strengthened copper alloys

材料科学 合金 作文(语言) 降水 沉淀硬化 冶金 语言学 物理 哲学 气象学
作者
Hongtao Zhang,Huadong Fu,Shuaicheng Zhu,Wei Yong,Jianxin Xie
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:215: 117118-117118 被引量:151
标识
DOI:10.1016/j.actamat.2021.117118
摘要

Optimizing the composition and improving the conflicting mechanical and electrical properties of multiple complex alloys has always been difficult by traditional trial-and-error methods. Here we propose a machine learning strategy to design alloys with remarkable properties by screening key alloy factors through correlation screening, recursive elimination and exhaustive screening, and then designing composition iteratively through Bayesian optimization. Taking the precipitation strengthened copper alloys as an example, 5 kinds of key alloy factors affecting hardness (HV) and 6 kinds of key alloy factors affecting electrical conductivity (EC) were obtained by screening alloy factors. “HV - key alloy factors” model with error less than 7% and the “EC - key alloy factors” model with error less than 9% were established, respectively. Then, new copper alloys were effectively designed utilizing Bayesian optimization and iterative optimization experiments. Designed Cu-1.3Ni-1.4Co-0.56Si-0.03Mg alloy has excellent combined mechanical and electrical properties with the measured ultimate tensile strength (UTS) of 858 MPa and EC of 47.6%IACS. The property results are superior to the reported precipitation strengthened copper alloys, which realize the simultaneous improvement of the conflicting mechanical and electrical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖一达完成签到 ,获得积分10
刚刚
丹dan完成签到,获得积分10
1秒前
Xiaoguo发布了新的文献求助10
4秒前
7秒前
舒心念柏关注了科研通微信公众号
8秒前
qinhan给qinhan的求助进行了留言
12秒前
gaberella发布了新的文献求助80
12秒前
lmp发布了新的文献求助20
13秒前
bosslin完成签到,获得积分10
14秒前
猫猫雨完成签到 ,获得积分10
14秒前
Xiaoguo完成签到,获得积分20
15秒前
15秒前
20秒前
研友_8oBQ3Z发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
舒心念柏发布了新的文献求助10
23秒前
fry完成签到,获得积分10
23秒前
郝好完成签到 ,获得积分10
24秒前
魔幻诗兰发布了新的文献求助10
26秒前
26秒前
ashore完成签到 ,获得积分20
26秒前
26秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
fry发布了新的文献求助10
27秒前
31秒前
十块小子完成签到,获得积分10
31秒前
eric888应助毛毛猫采纳,获得100
32秒前
myl发布了新的文献求助10
33秒前
魔幻诗兰完成签到,获得积分10
34秒前
34秒前
优秀的媚颜完成签到 ,获得积分10
34秒前
滚滚发布了新的文献求助10
34秒前
xiaon完成签到,获得积分10
37秒前
37秒前
38秒前
38秒前
深情安青应助一一采纳,获得10
39秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865566
求助须知:如何正确求助?哪些是违规求助? 3407973
关于积分的说明 10656268
捐赠科研通 3131990
什么是DOI,文献DOI怎么找? 1727446
邀请新用户注册赠送积分活动 832314
科研通“疑难数据库(出版商)”最低求助积分说明 780189