Prognostic and Predictive Value of Immune-Related Gene Pair Signature in Primary Lower-Grade Glioma Patients

列线图 单变量 比例危险模型 胶质瘤 肿瘤科 内科学 多元统计 医学 基因签名 弗雷明翰风险评分 生存分析 生物标志物 基因 癌症研究 接收机工作特性 危险系数 单变量分析 队列 免疫系统 总体生存率 多元分析 生物 基因表达 疾病 计算机科学 遗传学 机器学习
作者
Kunjian Lei,Jinyu Li,Zewei Tu,Feng Liu,Minhua Ye,Miaojing Wu,Yue Zhu,Min Luo,Li Lin,Chuming Tao,Kai Huang,Xingen Zhu
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:11 被引量:2
标识
DOI:10.3389/fonc.2021.665870
摘要

Immune-related gene pairs (IRGPs) have been associated with prognosis in various cancer types, but few studies have examined their prognostic capabilities in glioma patients. Here, we gathered the gene expression and clinical profile data of primary lower-grade glioma (LGG) patients from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA, containing CGGAseq1 and CGGAseq2), the Gene Expression Omnibus (GEO: GSE16011), and Rembrandt datasets. In the TCGA dataset, univariate Cox regression was performed to detect overall survival (OS)-related IRGs, Lasso regression, and multivariate Cox regression were used to screen robust prognosis-related IRGs, and 19 IRGs were selected for the construction of an IRGP prognostic signature. All patients were allotted to high- and low-risk subgroups based on the TCGA dataset median value risk score. Validation analysis indicated that the IRGP signature returned a stable prognostic value among all datasets. Univariate and multivariate Cox regression analyses indicated that the IRG -signature could efficiently predict the prognosis of primary LGG patients. The IRGP-signature-based nomogram model was built, revealing the reliable ability of the IRGP signature to predict clinical prognosis. The single-sample gene set enrichment analysis (ssGSEA) suggested that high-risk samples contained higher numbers of immune cells but featured lower tumor purity than low-risk samples. Finally, we verified the prognostic ability of the IRGP signature using experiments performed in LGG cells. These results indicated that the IRGP signature could be regarded as a stable prognostic assessment predictor for identifying high-risk primary LGG patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牧长一完成签到 ,获得积分0
1秒前
zheng_chen发布了新的文献求助10
2秒前
研友_VZG7GZ应助pbj采纳,获得10
2秒前
生动友绿发布了新的文献求助10
2秒前
英吉利25发布了新的文献求助10
2秒前
李健应助不知所措的咪采纳,获得10
3秒前
科研通AI5应助duduguai采纳,获得10
4秒前
6秒前
尹伊发布了新的文献求助200
6秒前
6秒前
6秒前
小敏完成签到,获得积分10
9秒前
9秒前
9秒前
sssssss发布了新的文献求助10
9秒前
汉堡包应助佑予和安采纳,获得10
10秒前
Much发布了新的文献求助10
11秒前
xiao发布了新的文献求助10
11秒前
肥肥完成签到,获得积分10
12秒前
13秒前
黄腾完成签到,获得积分10
13秒前
13秒前
Phil完成签到 ,获得积分10
13秒前
yar应助喔喔喔哦wo采纳,获得10
16秒前
17秒前
Owen应助生动友绿采纳,获得10
17秒前
17秒前
大个应助黄腾采纳,获得10
19秒前
19秒前
19秒前
19秒前
科目三应助sssssss采纳,获得10
21秒前
besatified给Sandy的求助进行了留言
23秒前
友好盼晴发布了新的文献求助10
24秒前
jeffgong完成签到,获得积分20
24秒前
刘宏发布了新的文献求助10
24秒前
ye发布了新的文献求助10
24秒前
25秒前
神途完成签到,获得积分10
26秒前
fff完成签到,获得积分10
28秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Sustainability and the Fashion Industry 700
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4066355
求助须知:如何正确求助?哪些是违规求助? 3605254
关于积分的说明 11449211
捐赠科研通 3327280
什么是DOI,文献DOI怎么找? 1829250
邀请新用户注册赠送积分活动 899215
科研通“疑难数据库(出版商)”最低求助积分说明 819502