基本矩阵
计算机视觉
人工智能
旋转矩阵
翻译(生物学)
摄像机矩阵
计算机科学
基本矩阵(线性微分方程)
旋转(数学)
校准
基质(化学分析)
摄像机切除
匹配(统计)
尺度不变特征变换
双眼视觉
特征(语言学)
点集注册
摄像机自动校准
点(几何)
双眼视差
数学
特征提取
针孔相机模型
对称矩阵
物理
信使核糖核酸
复合材料
化学
材料科学
特征向量
哲学
数学分析
统计
基因
量子力学
生物化学
语言学
状态转移矩阵
几何学
作者
Siyu Chen,Na Chen,Zhao Sun,Ran Meng
标识
DOI:10.1109/dtpi52967.2021.9540201
摘要
To the calibration of the extrinsic parameters for binocular camera in the unknown environment, we propose a novel method to estimate the rotation matrix and the translation vector based on the essential matrix. By extracting SIFT feature point pairs from stereo images which taken by binocular camera, and matching the feature point pairs with the FLANN algorithm, the essential matrix can be estimated, and the extrinsic parameters can be initially derived. On this basis, the objective function is constructed by adopting the physical distance between two spatial points of the calibrator whose size is known in 3D space, and the rotation matrix is further optimized. The experimental results present that the algorithm has a high accuracy of depth estimation, and the error is smaller than the un-optimized algorithm. This method can be used as a feasible scheme for the estimation of extrinsic parameters of binocular camera.
科研通智能强力驱动
Strongly Powered by AbleSci AI