Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions

人工智能 局部二进制模式 模式识别(心理学) 计算机科学 面部识别系统 特征提取 规范化(社会学) 直方图 稳健性(进化) 计算机视觉 预处理器 人类学 基因 图像(数学) 生物化学 社会学 化学
作者
Xiaoyang Tan,Bill Triggs
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 1635-1650 被引量:2765
标识
DOI:10.1109/tip.2010.2042645
摘要

Making recognition more reliable under uncontrolled lighting conditions is one of the most important challenges for practical face recognition systems. We tackle this by combining the strengths of robust illumination normalization, local texture-based face representations, distance transform based matching, kernel-based feature extraction and multiple feature fusion. Specifically, we make three main contributions: 1) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; 2) we introduce local ternary patterns (LTP), a generalization of the local binary pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions, and we show that replacing comparisons based on local spatial histograms with a distance transform based similarity metric further improves the performance of LBP/LTP based face recognition; and 3) we further improve robustness by adding Kernel principal component analysis (PCA) feature extraction and incorporating rich local appearance cues from two complementary sources--Gabor wavelets and LBP--showing that the combination is considerably more accurate than either feature set alone. The resulting method provides state-of-the-art performance on three data sets that are widely used for testing recognition under difficult illumination conditions: Extended Yale-B, CAS-PEAL-R1, and Face Recognition Grand Challenge version 2 experiment 4 (FRGC-204). For example, on the challenging FRGC-204 data set it halves the error rate relative to previously published methods, achieving a face verification rate of 88.1% at 0.1% false accept rate. Further experiments show that our preprocessing method outperforms several existing preprocessors for a range of feature sets, data sets and lighting conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安生完成签到 ,获得积分10
刚刚
漂亮醉波完成签到 ,获得积分10
1秒前
orixero应助a涵采纳,获得10
1秒前
健忘英姑发布了新的文献求助10
3秒前
Akim应助哎哟你干嘛采纳,获得10
4秒前
112发布了新的文献求助10
6秒前
xxnn完成签到,获得积分10
7秒前
vffg完成签到,获得积分10
8秒前
丘比特应助锤死别人的锤采纳,获得30
10秒前
完美世界应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI5应助香香甜甜采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
沐熙发布了新的文献求助10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得30
12秒前
大个应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
samvega应助科研通管家采纳,获得20
12秒前
华仔应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI5应助博修采纳,获得10
13秒前
感冒灵完成签到,获得积分20
14秒前
16秒前
咚咚完成签到,获得积分10
16秒前
天天快乐应助xl采纳,获得10
19秒前
21秒前
21秒前
天天快乐应助刻苦的千凝采纳,获得10
21秒前
宋小兔应助WANWAN采纳,获得10
22秒前
22秒前
之_ZH完成签到 ,获得积分10
23秒前
112完成签到,获得积分10
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Pteromalidae 600
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842773
求助须知:如何正确求助?哪些是违规求助? 3384798
关于积分的说明 10537368
捐赠科研通 3105360
什么是DOI,文献DOI怎么找? 1710232
邀请新用户注册赠送积分活动 823571
科研通“疑难数据库(出版商)”最低求助积分说明 774137