Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions

人工智能 局部二进制模式 模式识别(心理学) 计算机科学 面部识别系统 特征提取 规范化(社会学) 直方图 稳健性(进化) 计算机视觉 预处理器 生物化学 化学 社会学 人类学 图像(数学) 基因
作者
Xiaoyang Tan,Bill Triggs
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 1635-1650 被引量:2805
标识
DOI:10.1109/tip.2010.2042645
摘要

Making recognition more reliable under uncontrolled lighting conditions is one of the most important challenges for practical face recognition systems. We tackle this by combining the strengths of robust illumination normalization, local texture-based face representations, distance transform based matching, kernel-based feature extraction and multiple feature fusion. Specifically, we make three main contributions: 1) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; 2) we introduce local ternary patterns (LTP), a generalization of the local binary pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions, and we show that replacing comparisons based on local spatial histograms with a distance transform based similarity metric further improves the performance of LBP/LTP based face recognition; and 3) we further improve robustness by adding Kernel principal component analysis (PCA) feature extraction and incorporating rich local appearance cues from two complementary sources--Gabor wavelets and LBP--showing that the combination is considerably more accurate than either feature set alone. The resulting method provides state-of-the-art performance on three data sets that are widely used for testing recognition under difficult illumination conditions: Extended Yale-B, CAS-PEAL-R1, and Face Recognition Grand Challenge version 2 experiment 4 (FRGC-204). For example, on the challenging FRGC-204 data set it halves the error rate relative to previously published methods, achieving a face verification rate of 88.1% at 0.1% false accept rate. Further experiments show that our preprocessing method outperforms several existing preprocessors for a range of feature sets, data sets and lighting conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助无异常采纳,获得10
5秒前
zha完成签到,获得积分10
6秒前
sunshine完成签到 ,获得积分10
6秒前
别再熬夜完成签到,获得积分10
7秒前
顾矜应助铁铁采纳,获得10
7秒前
8秒前
9秒前
幽壑之潜蛟应助幻梦境采纳,获得10
10秒前
11秒前
梦的故居发布了新的文献求助10
13秒前
ty发布了新的文献求助10
14秒前
16秒前
科研通AI6.2应助linn采纳,获得10
16秒前
17秒前
铁铁发布了新的文献求助10
19秒前
赘婿应助ty采纳,获得10
19秒前
希望天下0贩的0应助luckbaby采纳,获得10
22秒前
蠢蠢完成签到,获得积分10
22秒前
尔耳应助gankLei采纳,获得10
22秒前
23秒前
勤恳的雅青完成签到,获得积分10
23秒前
无异常发布了新的文献求助10
23秒前
24秒前
大雁完成签到 ,获得积分0
25秒前
26秒前
28秒前
29秒前
搜集达人应助铁铁采纳,获得10
31秒前
左囧发布了新的文献求助10
32秒前
可爱的函函应助ssky采纳,获得10
33秒前
辛勤长颈鹿完成签到,获得积分10
34秒前
杨程蛟完成签到,获得积分10
35秒前
35秒前
别再熬夜发布了新的文献求助10
36秒前
翁雁丝完成签到 ,获得积分0
36秒前
合适板栗发布了新的文献求助10
37秒前
科研通AI6.1应助暮色晚钟采纳,获得10
38秒前
bkagyin应助活泼的诗兰采纳,获得10
42秒前
黄豆发布了新的文献求助10
42秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Separating Singapore from British India 300
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5859914
求助须知:如何正确求助?哪些是违规求助? 6350851
关于积分的说明 15641244
捐赠科研通 4973669
什么是DOI,文献DOI怎么找? 2682822
邀请新用户注册赠送积分活动 1626455
关于科研通互助平台的介绍 1583672