Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions

人工智能 局部二进制模式 模式识别(心理学) 计算机科学 面部识别系统 特征提取 规范化(社会学) 直方图 稳健性(进化) 计算机视觉 预处理器 生物化学 化学 社会学 人类学 图像(数学) 基因
作者
Xiaoyang Tan,Bill Triggs
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 1635-1650 被引量:2805
标识
DOI:10.1109/tip.2010.2042645
摘要

Making recognition more reliable under uncontrolled lighting conditions is one of the most important challenges for practical face recognition systems. We tackle this by combining the strengths of robust illumination normalization, local texture-based face representations, distance transform based matching, kernel-based feature extraction and multiple feature fusion. Specifically, we make three main contributions: 1) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; 2) we introduce local ternary patterns (LTP), a generalization of the local binary pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions, and we show that replacing comparisons based on local spatial histograms with a distance transform based similarity metric further improves the performance of LBP/LTP based face recognition; and 3) we further improve robustness by adding Kernel principal component analysis (PCA) feature extraction and incorporating rich local appearance cues from two complementary sources--Gabor wavelets and LBP--showing that the combination is considerably more accurate than either feature set alone. The resulting method provides state-of-the-art performance on three data sets that are widely used for testing recognition under difficult illumination conditions: Extended Yale-B, CAS-PEAL-R1, and Face Recognition Grand Challenge version 2 experiment 4 (FRGC-204). For example, on the challenging FRGC-204 data set it halves the error rate relative to previously published methods, achieving a face verification rate of 88.1% at 0.1% false accept rate. Further experiments show that our preprocessing method outperforms several existing preprocessors for a range of feature sets, data sets and lighting conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.2应助研友_Z343J8采纳,获得20
刚刚
丁3发布了新的文献求助10
1秒前
3秒前
阿里山完成签到,获得积分10
3秒前
4秒前
枝易应助半夏采纳,获得10
6秒前
yin完成签到,获得积分20
7秒前
Alexia2_完成签到,获得积分10
7秒前
英姑应助flybird采纳,获得10
7秒前
8秒前
9秒前
12秒前
研友_Z343J8完成签到,获得积分10
12秒前
CodeCraft应助追人的风筝采纳,获得10
12秒前
13秒前
13秒前
酷炫抽屉完成签到 ,获得积分10
14秒前
15秒前
斯文败类应助56555采纳,获得10
15秒前
XRT发布了新的文献求助10
15秒前
tianwei发布了新的文献求助10
17秒前
17秒前
尊敬怀柔发布了新的文献求助10
18秒前
606发布了新的文献求助10
19秒前
共享精神应助finn采纳,获得10
19秒前
TonyXWZhang完成签到,获得积分10
20秒前
20秒前
研友_Z343J8发布了新的文献求助20
23秒前
Akim应助Patrick采纳,获得10
25秒前
绿色猫猫头完成签到 ,获得积分10
25秒前
隐形的凌翠完成签到,获得积分10
26秒前
共享精神应助秋小阳桑采纳,获得10
26秒前
万能图书馆应助sylviawj采纳,获得10
27秒前
28秒前
28秒前
29秒前
shaoshao86完成签到,获得积分10
29秒前
29秒前
finn发布了新的文献求助10
32秒前
叶子发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
Berlitz Picture Dictionary Arabic 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5864453
求助须知:如何正确求助?哪些是违规求助? 6401915
关于积分的说明 15651261
捐赠科研通 4978799
什么是DOI,文献DOI怎么找? 2685531
邀请新用户注册赠送积分活动 1628595
关于科研通互助平台的介绍 1586330