核酸酶
核糖核酸酶P
核糖核酸酶H
寡核苷酸
生物
背景(考古学)
生物物理学
立体化学
手性(物理)
脚印
体外
核糖核酸
生物化学
DNA
化学
夸克
基序列
古生物学
物理
基因
量子力学
手征对称破缺
Nambu–Jona Lasinio模型
作者
Wei Wan,Michael T. Migawa,Guillermo Vasquez,Heather Murray,Josh G. Nichols,Hans Gaus,Andrés Berdeja,Sam Lee,Christopher Hart,Walt F. Lima,Eric E. Swayze,Punit P. Seth
摘要
Bicyclic oxazaphospholidine monomers were used to prepare a series of phosphorothioate (PS)-modified gapmer antisense oligonucleotides (ASOs) with control of the chirality of each of the PS linkages within the 10-base gap. The stereoselectivity was determined to be 98% for each coupling. The objective of this work was to study how PS chirality influences biophysical and biological properties of the ASO including binding affinity (Tm), nuclease stability, activity in vitro and in vivo, RNase H activation and cleavage patterns (both human and E. coli) in a gapmer context. Compounds that had nine or more Sp-linkages in the gap were found to be poorly active in vitro, while compounds with uniform Rp-gaps exhibited activity very similar to that of the stereo-random parent ASOs. Conversely, when tested in vivo, the full Rp-gap compound was found to be quickly metabolized resulting in low activity. A total of 31 ASOs were prepared with control of the PS chirally of each linkage within the gap in an attempt to identify favorable Rp/Sp positions. We conclude that a mix of Rp and Sp is required to achieve a balance between good activity and nuclease stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI