Molecular Classification of Estrogen Receptor-positive/Luminal Breast Cancers

乳腺癌 雌激素受体 基因表达谱 肿瘤科 微阵列 内科学 疾病 医学 微阵列分析技术 癌症研究 癌症 基因 生物 基因表达 生物信息学 遗传学
作者
Felipe C. Geyer,Daniel Nava Rodrigues,Britta Weigelt,Jorge S. Reis‐Filho
出处
期刊:Advances in Anatomic Pathology [Lippincott Williams & Wilkins]
卷期号:19 (1): 39-53 被引量:87
标识
DOI:10.1097/pap.0b013e31823fafa0
摘要

Estrogen receptor (ER)-positive breast cancer is the most prevalent subtype of invasive breast cancers. Patients with ER-positive breast cancers have variable clinical outcomes and responses to endocrine therapy and chemotherapy. With the advent of microarray-based gene expression profiling, unsupervised analysis methods have resulted in a classification of ER-positive disease into subtypes with different outcomes (ie, luminal A and luminal B); subsequent studies have demonstrated that these subtypes have different patterns of genetic aberrations and outcome. Studies based on supervised methods of microarray analysis have led to the development of prognostic gene signatures that identify a subgroup of ER-positive breast cancer patients with excellent outcome, who could forego chemotherapy. Despite the excitement with these approaches, several lines of evidence have demonstrated that the subclassification of ER-positive cancers and the prognostic value of gene signatures is largely driven by the expression levels of proliferation-related genes and that proliferation markers, such as Ki67, may provide equivalent prognostic information to that provided by gene signatures. In this review, we discuss the contribution of gene expression profiling to the classification of ER-positive breast cancer, the role of prognostic and predictive signatures, and the potential stratification of ER-positive disease according to their dependency on the phosphatidylinositol 3-kinase pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助dzh采纳,获得30
刚刚
1秒前
1秒前
HEAUBOOK应助519采纳,获得10
1秒前
自然背包完成签到,获得积分10
1秒前
YangSihan发布了新的文献求助10
2秒前
2秒前
牛马发布了新的文献求助10
2秒前
pluto应助跑快点采纳,获得10
2秒前
可口不可乐完成签到,获得积分10
3秒前
404完成签到,获得积分10
3秒前
研友_VZG7GZ应助科研r采纳,获得10
3秒前
4秒前
4秒前
莫兮佐发布了新的文献求助10
5秒前
科研通AI5应助Sshan采纳,获得10
5秒前
5秒前
upupup应助个性元枫采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
斯文败类应助简单的石头采纳,获得10
7秒前
7秒前
8秒前
布布完成签到,获得积分10
8秒前
8秒前
科研通AI5应助YangSihan采纳,获得10
8秒前
8秒前
SciGPT应助莉莉采纳,获得10
9秒前
9秒前
9秒前
Eos发布了新的文献求助10
9秒前
zjy完成签到,获得积分10
9秒前
superxiao应助舒适路人采纳,获得10
10秒前
10秒前
ncjdoi发布了新的文献求助10
10秒前
柴犬发布了新的文献求助50
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786174
求助须知:如何正确求助?哪些是违规求助? 3331826
关于积分的说明 10252362
捐赠科研通 3047109
什么是DOI,文献DOI怎么找? 1672400
邀请新用户注册赠送积分活动 801279
科研通“疑难数据库(出版商)”最低求助积分说明 760137