估计员
均方误差
核密度估计
条件期望
最小方差无偏估计量
估计量的偏差
核(代数)
核回归
一致估计量
计量经济学
计算机科学
有效估计量
变核密度估计
非参数回归
条件方差
应用数学
核更平滑
条件概率分布
数学
统计
核方法
组合数学
人工智能
波动性(金融)
径向基函数核
ARCH模型
支持向量机
作者
Rob J. Hyndman,David M. Bashtannyk,Gary K. Grunwald
标识
DOI:10.1080/10618600.1996.10474715
摘要
Abstract We consider the kernel estimator of conditional density and derive its asymptotic bias, variance, and mean-square error. Optimal bandwidths (with respect to integrated mean-square error) are found and it is shown that the convergence rate of the density estimator is order n –2/3. We also note that the conditional mean function obtained from the estimator is equivalent to a kernel smoother. Given the undesirable bias properties of kernel smoothers, we seek a modified conditional density estimator that has mean equivalent to some other nonparametric regression smoother with better bias properties. It is also shown that our modified estimator has smaller mean square error than the standard estimator in some commonly occurring situations. Finally, three graphical methods for visualizing conditional density estimators are discussed and applied to a data set consisting of maximum daily temperatures in Melbourne, Australia.
科研通智能强力驱动
Strongly Powered by AbleSci AI