ME-PLAN: A deep prototypical learning with local attention network for dynamic micro-expression recognition

计算机科学 人工智能 判别式 帧(网络) 模式识别(心理学) 深度学习 表达式(计算机科学) 面部表情 特征(语言学) 困境 机器学习 电信 语言学 哲学 认识论 程序设计语言
作者
Sirui Zhao,Huaying Tang,Shifeng Liu,Yangsong Zhang,Hao Wang,Tong Xu,Enhong Chen,Cuntai Guan
出处
期刊:Neural Networks [Elsevier BV]
卷期号:153: 427-443 被引量:40
标识
DOI:10.1016/j.neunet.2022.06.024
摘要

As one of the important psychological stress reactions, Micro-expressions (MEs) are spontaneous and subtle facial movements, which usually occur in a high-stake situation and can reveal genuine human feelings and cognition. ME, Recognition (MER) has essential applications in many fields such as lie detection, criminal investigation, and psychological healing. However, due to the challenges of learning discriminative ME features via fleeting facial subtle reactions as well as the shortage of available MEs data, this research topic is still far from well-studied. To this end, in this paper, we propose a deep prototypical learning framework, namely ME-PLAN, with a local attention mechanism for the MER problem. Specifically, ME-PLAN consists of two components, i.e., a 3D residual prototypical network and a local-wise attention module, where the former aims to learn the precise ME feature prototypes through expression-related knowledge transfer and episodic training, and the latter could facilitate the attention to the local facial movements. Furthermore, to alleviate the dilemma that most MER methods need to depend on manually annotated apex frames, we propose an apex frame spotting method with Unimodal Pattern Constrained (UPC) and further extract ME key-frames sequences based on the detected apex frames to train our proposed ME-PLAN in an end-to-end manner. Finally, through extensive experiments and interpretable analysis regarding the apex frame spotting and MER on composite-database, we demonstrate the superiority and effectiveness of the proposed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇文宛菡发布了新的文献求助10
刚刚
努力学习发布了新的文献求助10
刚刚
高冷百事可乐完成签到,获得积分10
刚刚
1秒前
FashionBoy应助111采纳,获得10
1秒前
1秒前
2秒前
轻松豁完成签到,获得积分10
2秒前
2秒前
子车茗应助QQQ采纳,获得20
2秒前
2秒前
2秒前
木子发布了新的文献求助10
3秒前
夏禾绿完成签到 ,获得积分10
3秒前
Milou发布了新的文献求助10
3秒前
木子李完成签到 ,获得积分10
3秒前
情怀应助着急的笑旋采纳,获得30
4秒前
4秒前
巴哒完成签到,获得积分10
4秒前
4秒前
汉堡包应助拼搏的问玉采纳,获得10
5秒前
WYP完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助俭朴的一曲采纳,获得10
5秒前
SYLH应助初九采纳,获得10
5秒前
Li发布了新的文献求助10
6秒前
稳重怀寒发布了新的文献求助30
7秒前
科研通AI5应助loveyourself采纳,获得30
7秒前
伍六柒发布了新的文献求助10
8秒前
9秒前
所所应助大胆代桃采纳,获得20
9秒前
9秒前
SciGPT应助kiki采纳,获得10
10秒前
张张团团发布了新的文献求助10
11秒前
月湖发布了新的文献求助10
12秒前
13秒前
还不错完成签到,获得积分10
13秒前
14秒前
西扬发布了新的文献求助20
14秒前
xuhanghang完成签到,获得积分10
15秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817273
求助须知:如何正确求助?哪些是违规求助? 3360699
关于积分的说明 10408765
捐赠科研通 3078773
什么是DOI,文献DOI怎么找? 1690784
邀请新用户注册赠送积分活动 814097
科研通“疑难数据库(出版商)”最低求助积分说明 768050