Enhancing removal of hydrogen from granular polysilicon by innovating vacuum separation model and method for SoG-Si

材料科学 脱氢 大气压力 硅烷 化学工程 复合材料 光电子学 催化作用 化学 生物化学 有机化学 工程类 海洋学 地质学
作者
Zhiliang Wu,Guoyu Qian,Zhi Wang,Dong Wang,Wenhui Ma
出处
期刊:Solar Energy [Elsevier]
卷期号:241: 492-503 被引量:1
标识
DOI:10.1016/j.solener.2022.06.033
摘要

Silane process of granular polysilicon has become a promising method for the preparation of polysilicon due to its continuous low temperature, simple process and low energy consumption. However, granular silicon contains more hydrogen than conventional columnar silicon, which can result in the deterioration of single crystal furnace thermal field life and rod stability by the “hydrogen jump” in the process of Czochralski method. Hydrogen removal has become an important problem to be solved in the industry development. Thus, we propose a hydrogen separation model suitable for silicon system based on vacuum experiment and thermodynamic calculation, which can provide a theoretical basis for the research and development of silicon dehydrogenation method. The predicted removal rate of hydrogen at different temperatures and vacuum pressures is in good agreement with the experimental results, reflecting the reasonability of the model. The results show that the hydrogen removal rate increases with the increasing of temperature and the decreasing of pressure, where temperature plays a leading role in the removal of hydrogen in silicon. At less than one atmosphere, the increase in dehydrogenation rate by 1 °C ranges from 0.01% to 0.25% in the temperature range from 1450 to 1800°CAt temperatures below 1800°Cthe maximum dehydrogenation rate is less than 0.001% for each 1pa reduction in pressure from one atmospheric pressure to 1000pa. According to the model calculation results, a hydrogen removal method is designed by using the vacuum electromagnetic induction. The deep removal of trace hydrogen in silicon has been realized, hydrogen in silicon drops rapidly from around 20 ppm to less than 5 ppm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jiong发布了新的文献求助10
1秒前
1秒前
www发布了新的文献求助10
2秒前
油猫饼发布了新的文献求助10
2秒前
mmcmc发布了新的文献求助10
3秒前
3秒前
依旧应助yy采纳,获得10
4秒前
4秒前
4秒前
超棒的发布了新的文献求助10
5秒前
duqian233发布了新的文献求助10
5秒前
wmx完成签到,获得积分10
6秒前
7秒前
0011223344发布了新的文献求助10
7秒前
雪碧呀发布了新的文献求助10
8秒前
9秒前
9秒前
wmx发布了新的文献求助10
10秒前
wzhang完成签到,获得积分10
10秒前
11秒前
mmcmc完成签到,获得积分10
12秒前
12秒前
13秒前
默默幼南发布了新的文献求助10
14秒前
14秒前
wzhang发布了新的文献求助10
15秒前
hezwy完成签到,获得积分10
15秒前
领导范儿应助zrw采纳,获得10
15秒前
图兰发布了新的文献求助10
15秒前
Cheng完成签到,获得积分10
15秒前
16秒前
慕豁发布了新的文献求助10
16秒前
1376完成签到,获得积分10
16秒前
16秒前
啸海应助Yanshil采纳,获得30
16秒前
围城烟火完成签到,获得积分10
17秒前
17秒前
Xhh完成签到,获得积分10
18秒前
石头发布了新的文献求助10
18秒前
高分求助中
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
comprehensive molecular insect science 1000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Challenges, Strategies, and Resiliency in Disaster and Risk Management 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2481476
求助须知:如何正确求助?哪些是违规求助? 2144203
关于积分的说明 5468763
捐赠科研通 1866692
什么是DOI,文献DOI怎么找? 927740
版权声明 563039
科研通“疑难数据库(出版商)”最低求助积分说明 496382