A Novel Neural Computing Model Applied to Estimate the Dynamic Modulus (DM) of Asphalt Mixtures by the Improved Beetle Antennae Search

沥青 超参数 人工神经网络 计算机科学 动态模量 材料科学 生物系统 结构工程 算法 工程类 机器学习 复合材料 动态力学分析 生物 聚合物
作者
Jiandong Huang,Mengmeng Zhou,Mohanad Muayad Sabri Sabri,Hongwei Yuan
出处
期刊:Sustainability [MDPI AG]
卷期号:14 (10): 5938-5938 被引量:25
标识
DOI:10.3390/su14105938
摘要

To accurately estimate the dynamic properties of the asphalt mixtures to be used in the Mechanistic-Empirical Pavement Design Guide (MEPDG), a novel neural computing model using the improved beetle antennae search was developed. Asphalt mixtures were designed conventionally by eight types of aggregate gradations and two types of asphalt binders. The dynamic modulus (DM) tests were conducted under 3 temperatures and 3 loading frequencies to construct 144 datasets for the machine learning process. A novel neural network model was developed by using an improved beetle antennae search (BAS) algorithm to adjust the hyperparameters more efficiently. The predictive results of the proposed model were determined by R and RMSE and the importance score of the input parameters was assessed as well. The prediction performance showed that the improved BAS algorithm can effectively adjust the hyperparameters of the neural network calculation model, and built the asphalt mixture DM prediction model has higher reliability and effectiveness than the random hyperparameter selection. The mixture model can accurately evaluate and predict the DM of the asphalt mixture to be used in MEPDG. The dynamic shear modulus of the asphalt binder is the most important parameter that affects the DM of the asphalt mixtures because of its high correlation with the adhesive effect in the composition. The phase angle of the binder showed the highest influence on the DM of the asphalt mixtures in the remaining variables. The importance of these influences can provide a reference for the future design of asphalt mixtures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小潘同学发布了新的文献求助10
1秒前
陶醉的萧发布了新的文献求助10
1秒前
淡泊宁静完成签到,获得积分10
2秒前
tanhaili完成签到,获得积分10
3秒前
3秒前
3秒前
樱桃完成签到,获得积分10
4秒前
英姑应助晚夜采纳,获得10
4秒前
5秒前
ww完成签到,获得积分10
5秒前
5秒前
7秒前
章鱼哥发布了新的文献求助10
7秒前
百事可乐发布了新的文献求助10
7秒前
中恐完成签到,获得积分0
8秒前
9秒前
ywongmath完成签到,获得积分10
9秒前
10秒前
10秒前
无情豪英完成签到 ,获得积分10
11秒前
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
ding应助羽毛采纳,获得10
14秒前
领导范儿应助孤独的匕采纳,获得10
14秒前
530完成签到,获得积分10
14秒前
蝌蚪发布了新的文献求助10
15秒前
Lucas应助艾尔迪亚大导演采纳,获得10
15秒前
马丝雨完成签到,获得积分10
16秒前
一路硕博发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
Er魁发布了新的文献求助10
18秒前
19秒前
大个应助顺利的书白采纳,获得30
19秒前
paltte发布了新的文献求助10
20秒前
科研通AI2S应助霖槿采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662602
求助须知:如何正确求助?哪些是违规求助? 4843726
关于积分的说明 15100462
捐赠科研通 4821010
什么是DOI,文献DOI怎么找? 2580494
邀请新用户注册赠送积分活动 1534530
关于科研通互助平台的介绍 1493062