Evaluation of the High Metals-Containing Coal Gasification Fine Slag as a High-Performance Adsorbent for Malachite Green Adsorption

吸附 化学工程 孔雀绿 弗伦德利希方程 化学吸附 朗缪尔 扩散 化学 材料科学 熔渣(焊接) 废水 工业废水处理 废物管理 冶金 有机化学 热力学 物理 工程类
作者
Yichen Dong,Feiqiang Guo,Rui Shu,Kaiming Dong,Qixia Qiao,Sha Liu,Liya Xu,Yonghui Bai
出处
期刊:Waste and Biomass Valorization [Springer Nature]
卷期号:13 (12): 4897-4909 被引量:15
标识
DOI:10.1007/s12649-022-01831-9
摘要

The concept of treating waste with waste is of great significance to realize the sustainable development of human society. In this work, the high metals-containing coal gasification fine slag (CGFS) from the coal gasification industry is directly transformed into an excellent adsorbent for malachite green wastewater adsorption. CGFS exhibits a rough and porous structure, which is mainly composed of SiO2 and various metal compounds. Numerous spherical structures which are generated by the melting of inorganic substances are distributed on the surface of CGFS with a large number of flocculent carbon structures covering the substrate or interspersed. Experiments confirm that CGFS is a competitive adsorbent for the removal of malachite green due to its low cost and high adsorption performance. The theoretical maximum adsorption capacity of CGFS at 298 K predicted by the Langmuir model reached as high as 1787 mg/g and the capacity increases with the temperature. The removal efficiency reached 100% for CGFS at a solid–liquid ratio of 0.05 g/100 mL and a malachite green concentration of 100 mg/L. A dominant role of chemisorption was confirmed by the analytical results of the pseudo-second-order model and the Freundlich model combined with the characterization results. The metal oxides and carbon structures in CGFS are presumed to be the main active adsorption sites. From the fitting of the intraparticle diffusion model, the adsorption rate was limited first by membrane diffusion and then by intraparticle diffusion as the adsorption process proceeded.Graphical Abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸飞柏发布了新的文献求助10
刚刚
1秒前
华仔应助猪猪猪采纳,获得10
1秒前
LukaMagic完成签到,获得积分10
2秒前
bkagyin应助TJJJJJ采纳,获得10
2秒前
Su发布了新的文献求助10
3秒前
3秒前
知了完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
zzzZxp完成签到 ,获得积分10
7秒前
fishfun完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
共享精神应助chenzq采纳,获得10
8秒前
8秒前
9秒前
yu发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
Ran完成签到,获得积分10
11秒前
Daileo发布了新的文献求助10
11秒前
牛牛发布了新的文献求助10
12秒前
13秒前
猪猪猪发布了新的文献求助10
13秒前
在水一方应助科研进化中采纳,获得10
14秒前
14秒前
孤独的问柳完成签到,获得积分10
14秒前
Halari发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
riza发布了新的文献求助10
18秒前
Daileo完成签到,获得积分10
19秒前
栗子完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5669406
求助须知:如何正确求助?哪些是违规求助? 4895943
关于积分的说明 15127358
捐赠科研通 4828173
什么是DOI,文献DOI怎么找? 2585268
邀请新用户注册赠送积分活动 1538894
关于科研通互助平台的介绍 1497201