A lightweight approach for network intrusion detection in industrial cyber-physical systems based on knowledge distillation and deep metric learning

计算机科学 人工智能 深度学习 信息物理系统 机器学习 公制(单位) 蒸馏 入侵检测系统 数据挖掘 入侵 计算机安全 操作系统 运营管理 经济 化学 有机化学 地球化学 地质学
作者
Zhendong Wang,Zeyu Li,Daojing He,Sammy Chan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:206: 117671-117671 被引量:51
标识
DOI:10.1016/j.eswa.2022.117671
摘要

• The resource-constrained devices in Cyber-Physical Systems are considered. • The KD-TCNN model is utilized with knowledge distillation and metric learning. • A neural network training method called K-fold cross training is proposed. • The proposed model is tested using benchmark intrusion detection datasets. • Proposed mothed outperforms many state-of-the-art models. With the rapid development of technology and science, machine learning approaches and deep learning methods have been widely applied in industrial Cyber-Physical Systems. However, there are still some challenging issues for anomaly detection to classify various attacks in industrial CPS to ensure the cyber security, especially when dealing with resource-constrained IoT devices. In this paper, we propose a Knowledge Distillation model based on Triplet Convolution Neural Network to improve the model performance and greatly enhance the speed of anomaly detection for industrial CPS as well as reduce the complexity of the model. Specifically, during the training process, we design a robust model loss function to improve the training stability of the model. A new neural network training method called K-fold cross training is also proposed to enhance the accuracy of anomaly detection. A lot of experimental results demonstrate that the performance metrics of KD-TCNN on the benchmark datasets NSL-KDD and CIC IDS2017 have significant advantages over traditional deep learning approaches and the recent state-of-the-art models. Furthermore, when compared to the original model, our model's computational cost and size are both reduced by roughly 86% with just 0.4% accuracy loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
3秒前
4秒前
物质尽头完成签到 ,获得积分10
4秒前
Jenny发布了新的文献求助10
4秒前
魔幻芒果发布了新的文献求助10
5秒前
CipherSage应助风倾蓝白采纳,获得10
5秒前
5秒前
山川无恙完成签到,获得积分20
6秒前
犹豫的可冥完成签到,获得积分10
6秒前
FJ发布了新的文献求助10
7秒前
7秒前
苏州河发布了新的文献求助10
8秒前
8秒前
8秒前
NexusExplorer应助生动凝旋采纳,获得10
9秒前
shisui发布了新的文献求助20
10秒前
天天快乐应助xiaoguoxiaoguo采纳,获得10
12秒前
13秒前
ll应助魔幻芒果采纳,获得10
13秒前
山川无恙发布了新的文献求助30
13秒前
13秒前
14秒前
七只狐狸发布了新的文献求助30
14秒前
wu发布了新的文献求助10
15秒前
甜蜜的雁凡完成签到,获得积分20
16秒前
18秒前
1177发布了新的文献求助10
18秒前
小平发布了新的文献求助10
19秒前
华仔应助tesla采纳,获得10
21秒前
汉堡包应助SHI采纳,获得10
23秒前
24秒前
胡一刀发布了新的文献求助10
25秒前
25秒前
25秒前
lsx发布了新的文献求助30
26秒前
114514发布了新的文献求助20
27秒前
Liu丰发布了新的文献求助10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794706
求助须知:如何正确求助?哪些是违规求助? 3339486
关于积分的说明 10296205
捐赠科研通 3056183
什么是DOI,文献DOI怎么找? 1676910
邀请新用户注册赠送积分活动 804935
科研通“疑难数据库(出版商)”最低求助积分说明 762226