清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Accurate prediction of salmon freshness under temperature fluctuations using the convolutional neural network long short-term memory model

卷积神经网络 Gompertz函数 均方误差 计算机科学 人工神经网络 变量(数学) 应用数学 数学 生物系统 人工智能 算法 统计 机器学习 生物 数学分析
作者
Ting Wu,Jiajia Lu,Juan Zou,Ningxia Chen,Ling Yang
出处
期刊:Journal of Food Engineering [Elsevier BV]
卷期号:334: 111171-111171 被引量:21
标识
DOI:10.1016/j.jfoodeng.2022.111171
摘要

Freshness prediction was a research hotspot in the field of food science. The current microbial kinetic equations could predict the freshness under certain fixed temperature conditions, but they were no longer effective when the temperature was fluctuated. To solve this problem, this paper used deep learning techniques to mine the inherent relation of variable temperature during storage and proposed a novel model named CNN_LSTM (convolutional neural network_ long short-term memory). The model didn't need to fit the parameters of a fixed equation, and it had the advantage of predicting freshness within a range of temperature fluctuations. The results showed that CNN_LSTM could get better prediction results than classic microbial kinetics methods such as logistic equation, Gompertz equation and Arhenius equation under fixed temperature conditions. When the temperature fluctuated, the model could still accurately predict total viable counts (TVC) under variable temperature conditions, with the determination coefficient (R 2 ) greater than 0.95 and the root mean square error (RMSE) less than 0.2. In addition, the model had the potential to predict freshness under different change factors besides temperature fluctuations, which provided a new prospect for freshness prediction. • The salmon freshness under temperature fluctuations could be accurately predicted. • The CNN_LSTM model was proposed to improve the prediction performance compared to microbial kinetic equations. • The CNN_LSTM model could mine the inherent relation of variable temperature during storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
52秒前
滨滨发布了新的文献求助10
1分钟前
Lucas应助十分十分佳采纳,获得10
1分钟前
烟花应助童严柯采纳,获得10
1分钟前
456完成签到,获得积分10
1分钟前
hwen1998发布了新的文献求助10
1分钟前
h0jian09完成签到,获得积分10
1分钟前
1分钟前
是是是完成签到 ,获得积分10
1分钟前
1分钟前
hwen1998完成签到 ,获得积分10
2分钟前
2分钟前
童严柯发布了新的文献求助10
2分钟前
3分钟前
juan完成签到 ,获得积分10
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
Benhnhk21完成签到,获得积分10
3分钟前
科研通AI5应助要减肥中蓝采纳,获得10
4分钟前
4分钟前
甜蜜海蓝发布了新的文献求助10
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
甜蜜海蓝完成签到,获得积分10
4分钟前
5分钟前
5分钟前
科研通AI5应助要减肥中蓝采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
Alisha完成签到,获得积分10
5分钟前
5分钟前
6分钟前
小张同学完成签到 ,获得积分10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
激动的似狮完成签到,获得积分10
6分钟前
7分钟前
7分钟前
7分钟前
澳澳发布了新的文献求助10
8分钟前
8分钟前
归海浩阑应助科研通管家采纳,获得30
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5065519
求助须知:如何正确求助?哪些是违规求助? 4288108
关于积分的说明 13359637
捐赠科研通 4106884
什么是DOI,文献DOI怎么找? 2248899
邀请新用户注册赠送积分活动 1254411
关于科研通互助平台的介绍 1186179