Machine learning with magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis

医学 荟萃分析 子群分析 漏斗图 磁共振成像 乳腺癌 接收机工作特性 新辅助治疗 出版偏见 诊断优势比 曲线下面积 内科学 肿瘤科 癌症 放射科
作者
Xueheng Liang,Xingyan Yu,Tianhu Gao
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:150: 110247-110247 被引量:36
标识
DOI:10.1016/j.ejrad.2022.110247
摘要

The aim of this meta-analysis was to determine the diagnostic accuracy of machine learning (ML) models with MRI in predicting pathological response to neoadjuvant chemotherapy in patients with breast cancer. Furthermore, we compared the pathologic complete response (pCR) prediction performance of ML + radiomics with that of a deep learning (DL) algorithm.A search for relevant studies published until December 20, 2021 was conducted in MEDLINE and EMBASE databases. The quality of the studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies -2 criteria. The I2 value assessed the heterogeneity of the included studies as well as the decision to adopt a random effects model. The area under the receiver operating characteristic curves (AUC) was pooled to quantify the predictive accuracy. Subgroup analysis, meta-regression analysis, and sensitivity analysis were performed to detect potential sources of study heterogeneity. A funnel plot was used to investigate publication bias. The PROSPERO ID of our study was CRD42022284071.Seventeen eligible studies encompassing 3392 patients were evaluated in the analysis. ML + MRI showed high accuracy (AUC = 0.87, 95% CI = 0.84-0.91) in predicting response to neoadjuvant therapy. In subgroup analysis, the AUC of the DL subgroup (AUC = 0.92, 95% CI = 0.88-0.97) was higher than that of the ML + radiomics subgroup (AUC = 0.85, 95% CI = 0.82-0.90) (P = 0.030). In the ML + radiomics subgroup, the studies using MRI combined with other parameters (clinical or histopathologic information; AUC = 0.90, 95% CI = 0.85-0.96) reported better performance than studies using only MRI parameters (AUC = 0.82, 95% CI = 0.78-0.86) (P = 0.009).ML applied to MRI enabled moderate accuracy in predicting pathological response to neoadjuvant therapy in patients with breast cancer. Furthermore, the meta-analysis showed that DL had higher predictive accuracy than ML + radiomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LEE完成签到,获得积分10
刚刚
Owen应助须知函采纳,获得10
刚刚
小白发布了新的文献求助10
1秒前
1秒前
玉玉鼠完成签到,获得积分10
1秒前
XY发布了新的文献求助20
2秒前
youyou发布了新的文献求助10
2秒前
柚子皮发布了新的文献求助10
3秒前
假面绅士发布了新的文献求助10
3秒前
Hello应助hhp采纳,获得10
3秒前
拾荒者完成签到,获得积分10
5秒前
5秒前
5秒前
hhh完成签到 ,获得积分10
6秒前
大方岩完成签到,获得积分10
6秒前
wxh16403发布了新的文献求助10
7秒前
7秒前
heavenhorse应助April采纳,获得30
7秒前
7秒前
jiangmin0702完成签到,获得积分20
9秒前
小阮完成签到,获得积分10
9秒前
大方泥猴桃完成签到,获得积分10
9秒前
典雅小丸子完成签到,获得积分20
9秒前
包容剑鬼发布了新的文献求助10
9秒前
9秒前
小白完成签到,获得积分10
10秒前
11秒前
11秒前
ywzqdhy发布了新的文献求助10
11秒前
youyou完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
尊敬乐蕊完成签到,获得积分10
15秒前
Kristy发布了新的文献求助10
15秒前
非理性或发布了新的文献求助10
15秒前
16秒前
黑白画发布了新的文献求助10
16秒前
林大侠完成签到,获得积分10
16秒前
17秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4064929
求助须知:如何正确求助?哪些是违规求助? 3603521
关于积分的说明 11445203
捐赠科研通 3326250
什么是DOI,文献DOI怎么找? 1828584
邀请新用户注册赠送积分活动 898846
科研通“疑难数据库(出版商)”最低求助积分说明 819360