材料科学
尿素
石墨烯
堆积
超级电容器
电流密度
氮气
化学工程
电极
纳米技术
电容
氧化物
兴奋剂
化学
冶金
光电子学
有机化学
物理
工程类
物理化学
量子力学
作者
Ankit Yadav,Rajeev Kumar,Balaram Sahoo
摘要
We demonstrate the method of achieving excellent supercapacitance in nitrogen-doped reduced graphene oxide (N-rGO) sheets by controlling the amount of N-content through the use of different ratios of GO and urea during solvothermal synthesis. Here, urea plays a dual role in reducing GO and simultaneously doping nitrogen into the GO flakes forming exfoliated N-rGO sheets. The nitrogen content in N-rGO samples rises with an increase in the amounts of urea and saturates at a value of ∼14% for the GO : urea ratios beyond 1 : 8. The obtained N-rGO sheets with ∼ 5% N-content (obtained for GO : urea ratio of 1 : 3) were demonstrated as excellent supercapacitor materials. Using a 3-electrode setup, the maximum specific capacitance obtained for this sample was 514 F g-1 at a current density of 0.5 A g-1 (mass normalized current). The insights into the origin of this excellent supercapacitive behavior are explained through our results on optimum N-content, the relative amount of different N-environments, defects/disorders, and the degree of reduction of GO. Importantly, a proper stacking of rGO sheets with moderate N-content (∼5-6%) and a moderate amount of defects is the key to achieve high specific-capacitance. Furthermore, our 2-electrode device demonstrates the excellence of our samples with a Csp of 237 F g-1, a power density of 225 W kg-1, and an energy density of 6.7 W h kg-1 at 0.5 A g-1, exhibiting a high cyclic constancy with high capacitive retention of ∼ 82% even after 8000 cycles. Hence, our work provides a way to control the properties of N-rGO in achieving excellent supercapacitive performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI