Optimum retrofit strategy of FRP column jacketing system for non-ductile RC building frames using artificial neural network and genetic algorithm hybrid approach

结构工程 抗震改造 刚度 纤维增强塑料 遗传算法 人工神经网络 栏(排版) 工程类 地震灾害 薄泥浆 计算机科学 钢筋混凝土 人工智能 机器学习 土木工程 连接(主束)
作者
Jiuk Shin,Sang-Ki Park
出处
期刊:Journal of building engineering [Elsevier]
卷期号:57: 104919-104919 被引量:26
标识
DOI:10.1016/j.jobe.2022.104919
摘要

Existing reinforced concrete building structures have seismic and blast vulnerabilities due to their seismically deficient details. Such structural vulnerabilities can be mitigated using a fiber-reinforced polymer jacketing system (circular shape of prefabricated jacket shell and grout materials infilling annual spaces), which provides additional confining pressure to existing columns. To find the optimum retrofit scheme, a repeated procedure for designing, modeling, and simulating the retrofitted structure can be time-consuming. This paper proposed a rapid decision-making tool developed using a hybrid machine-learning technique, which can immediately derive optimum retrofit schemes without the laborious nature of manually repeated procedures. The hybrid technique consists of an artificial neural network for rapidly generating structural responses and a genetic algorithm for optimizing retrofit details (jacket strength and thickness mainly related to confinement; and grout strength and inner diameter of columns related to stiffness) under confinement and stiffness parameters. The machine-learning based tool optimized the retrofit details within target performance levels through maximizing the confinement ratio and minimizing the stiffness ratio, and it derived acceptable ranges of seismic loads. Based on the investigation, the geometric conditions-related stiffness parameters within a low confinement level were increased rather than increases in the confinement parameters. However, to extend acceptable ranges of seismic and blast hazard levels, the retrofit details were optimized with maximizing the confinement parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不知名选手完成签到,获得积分10
1秒前
九千岁完成签到,获得积分10
1秒前
爱科研的睿崽完成签到,获得积分10
1秒前
不安网络发布了新的文献求助10
2秒前
慕落清秋完成签到 ,获得积分10
2秒前
脑洞疼应助庆幸采纳,获得10
4秒前
LB发布了新的文献求助10
4秒前
4秒前
5秒前
科目三应助学术搭子采纳,获得10
6秒前
实验老六发布了新的文献求助10
7秒前
完美世界应助liuyiliuyi采纳,获得10
7秒前
8秒前
9秒前
10秒前
12秒前
Chemistry完成签到 ,获得积分10
12秒前
15秒前
砥砺前行完成签到 ,获得积分10
16秒前
求助人员发布了新的文献求助30
17秒前
量子星尘发布了新的文献求助10
17秒前
19秒前
Light完成签到,获得积分10
20秒前
22秒前
风清扬发布了新的文献求助30
22秒前
拉斐尔520完成签到,获得积分10
23秒前
FashionBoy应助Hyunstar采纳,获得30
25秒前
追逐123完成签到 ,获得积分10
26秒前
28秒前
开心榴莲大王完成签到 ,获得积分10
29秒前
麻木子完成签到,获得积分20
32秒前
32秒前
量子星尘发布了新的文献求助10
32秒前
lius发布了新的文献求助30
33秒前
贪玩的眼睛完成签到,获得积分10
33秒前
和谐的敏完成签到,获得积分10
33秒前
Fu完成签到 ,获得积分20
34秒前
1000发布了新的文献求助10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556163
求助须知:如何正确求助?哪些是违规求助? 4640783
关于积分的说明 14662947
捐赠科研通 4582797
什么是DOI,文献DOI怎么找? 2513629
邀请新用户注册赠送积分活动 1488235
关于科研通互助平台的介绍 1459006