The Interplay of Polymer Bridging and Entanglement in Toughening Polymer-Infiltrated Nanoparticle Films

材料科学 聚合物 纳米颗粒 韧性 复合材料 脆性 增韧 断裂韧性 复合数 桥接(联网) 体积分数 聚合物纳米复合材料 纳米技术 计算机网络 计算机科学
作者
Yiwei Qiang,Sumukh S. Pande,Daeyeon Lee,Kevin T. Turner
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (4): 6372-6381 被引量:16
标识
DOI:10.1021/acsnano.2c00471
摘要

Polymer-nanoparticle composite films (PNCFs) with high loadings of nanoparticles (NPs) (>50 vol %) have applications in multiple areas, and an understanding of their mechanical properties is essential for their broader use. The high-volume fraction and small size of the NPs lead to physical confinement of the polymers that can drastically change the properties of polymers relative to the bulk. We investigate the fracture behavior of a class of highly loaded PNCFs prepared by polymer infiltration into NP packings. These polymer-infiltrated nanoparticle films (PINFs) have applications as multifunctional coatings and membranes and provide a platform to understand the behavior of polymers that are highly confined. Here, the extent of confinement in PINFs is tuned from 0.1 to 44 and the fracture toughness of PINFs is increased by up to a factor of 12 by varying the molecular weight of the polymers over 3 orders of magnitude and using NPs with diameters ranging from 9 to 100 nm. The results show that brittle, low molecular weight (MW) polymers can significantly toughen NP packings, and this toughening effect becomes less pronounced with increasing NP size. In contrast, high MW polymers capable of forming interchain entanglements are more effective in toughening large NP packings. We propose that confinement has competing effects of polymer bridging increasing toughness and chain disentanglement decreasing toughness. These findings provide insight into the fracture behavior of confined polymers and will guide the development of mechanically robust PINFs as well as other highly loaded PNCFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫的发布了新的文献求助10
1秒前
1秒前
1秒前
li发布了新的文献求助10
2秒前
彭于晏完成签到,获得积分10
3秒前
916应助昏睡的幻巧采纳,获得10
3秒前
3秒前
sz完成签到,获得积分10
3秒前
3秒前
kkkkk完成签到,获得积分10
4秒前
4秒前
liu完成签到,获得积分10
4秒前
5秒前
Darren发布了新的文献求助10
6秒前
7秒前
科研通AI5应助Luhan采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
赵小赵发布了新的文献求助10
8秒前
次一口多多完成签到,获得积分10
8秒前
9秒前
可爱的函函应助li采纳,获得10
14秒前
xiaoxiao发布了新的文献求助10
14秒前
调皮初蝶发布了新的文献求助10
14秒前
赵小赵完成签到,获得积分20
17秒前
丸子完成签到,获得积分10
17秒前
缤月发布了新的文献求助10
17秒前
沉默的友安完成签到 ,获得积分10
18秒前
19秒前
19秒前
11发布了新的文献求助10
20秒前
传奇3应助能干夏波采纳,获得10
20秒前
20秒前
21秒前
22秒前
22秒前
Regulusyang完成签到,获得积分10
22秒前
昏睡的幻巧完成签到,获得积分20
24秒前
量子星尘发布了新的文献求助10
26秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870497
求助须知:如何正确求助?哪些是违规求助? 3412690
关于积分的说明 10680748
捐赠科研通 3137124
什么是DOI,文献DOI怎么找? 1730602
邀请新用户注册赠送积分活动 834253
科研通“疑难数据库(出版商)”最低求助积分说明 781073