Deep reinforcement learning for PID parameter tuning in greenhouse HVAC system energy Optimization: A TRNSYS-Python cosimulation approach

TRNSYS公司 设定值 暖通空调 Python(编程语言) 计算机科学 能源消耗 强化学习 PID控制器 热舒适性 温室 控制器(灌溉) 控制工程 模拟 控制理论(社会学) 汽车工程 人工智能 能量(信号处理) 操作系统 控制(管理) 数学 机械工程 工程类 空调 温度控制 生物 园艺 统计 农学 物理 热力学 电气工程
作者
Misbaudeen Aderemi Adesanya,Hammed Obasekore,Anis Rabiu,Wook-Ho Na,Qazeem Opeyemi Ogunlowo,Timothy Denen Akpenpuun,Min-Hwi Kim,Hyeon Tae Kim,Bo‐Yeong Kang,Hyun-Woo Lee
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:252: 124126-124126 被引量:28
标识
DOI:10.1016/j.eswa.2024.124126
摘要

The control of indoor temperature in greenhouses is crucial as it directly impacts the crop's thermal comfort and the performance of heating, ventilation, and air-conditioning (HVAC) systems. Conventional feedback controllers, like on/off, can sometimes make HVAC system work at full capacity when only half that capacity is needed. In contrast, the proportional-integral-derivative (PID) controller, provides precise control based on its P, I, and D parameters. However, it lacks a formal design procedure for optimizing a specified objective function. Previous studies have utilized conventional PID tuning approaches to track room setpoint temperature for residential buildings, data centers, and office buildings, with limited research in greenhouse applications. To address this gap, this study proposes a flexible PID controller that employs a deep reinforcement learning (DRL) algorithm to optimize its parameters, by tracking the setpoints and energy consumption of a greenhouse planted with tomatoes. This approach is different from the typical method of using the trained RL agent directly in HVAC controls. Through a self-made TRNSYS-Python cosimulation framework, the DRL agent interacts directly and in real time with the greenhouse and its plants. Consequently, optimized PID parameters were established and tested in the simulated environment. The resulting performance, in terms of both energy consumption and its ability to maintain the crop's comfort temperature, was compared with the simulated on/off and manually tuned PID controllers. Compared to the on/off baseline control, the proposed PID optimized parameters reduce energy use by 8.81% to 12.99% and the manually tuned PID parameters with the Ziegler-Nichols tuning method reduce energy use by 7.17 %. Additionally, the proposed method had a deviation of 2.07% to 3.13%, while the manually tuned PID controller and the on/off controller had deviations of 7.27% and 3.27%, respectively, from the minimum comfortable temperature. This study serves as a framework for improving the energy efficiency of greenhouse HVAC system operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星雨完成签到 ,获得积分10
1秒前
xxh完成签到,获得积分10
2秒前
Li YY发布了新的文献求助10
2秒前
qingmoheng应助riddle采纳,获得10
2秒前
申木驳回了Evina应助
5秒前
追风少年完成签到 ,获得积分10
5秒前
6秒前
7秒前
8秒前
hhr完成签到 ,获得积分10
8秒前
9秒前
9秒前
义气的惜霜完成签到,获得积分10
9秒前
一一完成签到,获得积分10
9秒前
桐桐应助秦源采纳,获得10
11秒前
melody发布了新的文献求助30
12秒前
JJ发布了新的文献求助10
13秒前
聪明的如冬完成签到,获得积分10
13秒前
渟柠完成签到,获得积分10
13秒前
一一发布了新的文献求助10
14秒前
14秒前
香哥完成签到 ,获得积分10
15秒前
星辰大海应助JefreeCN采纳,获得10
16秒前
zy发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
SSSS完成签到,获得积分10
17秒前
Li YY完成签到,获得积分10
17秒前
熊i发布了新的文献求助10
18秒前
WYang完成签到,获得积分10
19秒前
喜多发布了新的文献求助10
21秒前
可爱的函函应助七月采纳,获得10
21秒前
斯文败类应助子凯采纳,获得10
24秒前
25秒前
Music完成签到,获得积分10
25秒前
重重完成签到 ,获得积分10
26秒前
THN完成签到,获得积分10
28秒前
秦源发布了新的文献求助10
29秒前
饱满问夏发布了新的文献求助10
29秒前
大方的莫言完成签到 ,获得积分10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5517722
求助须知:如何正确求助?哪些是违规求助? 4610468
关于积分的说明 14522289
捐赠科研通 4547625
什么是DOI,文献DOI怎么找? 2491767
邀请新用户注册赠送积分活动 1473294
关于科研通互助平台的介绍 1445161