Medical image segmentation network based on multi-scale frequency domain filter

计算机科学 分割 人工智能 频域 模式识别(心理学) 图像分割 尺度空间分割 卷积神经网络 卷积(计算机科学) 计算机视觉 人工神经网络
作者
Yufeng Chen,Xiaoqian Zhang,Lifan Peng,Youdong He,Feng Sun,Huaijiang Sun
出处
期刊:Neural Networks [Elsevier BV]
卷期号:175: 106280-106280 被引量:11
标识
DOI:10.1016/j.neunet.2024.106280
摘要

With the development of deep learning, medical image segmentation in computer-aided diagnosis has become a research hotspot. Recently, UNet and its variants have become the most powerful medical image segmentation methods. However, these methods suffer from (1) insufficient sensing field and insufficient depth; (2) computational nonlinearity and redundancy of channel features; and (3) ignoring the interrelationships among feature channels. These problems lead to poor network segmentation performance and weak generalization ability. Therefore, first of all, we propose an effective replacement scheme of UNet base block, Double residual depthwise atrous convolution (DRDAC) block, to effectively improve the deficiency of receptive field and depth. Secondly, a new linear module, the Multi-scale frequency domain filter (MFDF), is designed to capture global information from the frequency domain. The high order multi-scale relationship is extracted by combining the depthwise atrous separable convolution with the frequency domain filter. Finally, a channel attention called Axial selection channel attention (ASCA) is redesigned to enhance the network's ability to model feature channel interrelationships. Further, we design a novel frequency domain medical image segmentation baseline method FDFUNet based on the above modules. We conduct extensive experiments on five publicly available medical image datasets and demonstrate that the present method has stronger segmentation performance as well as generalization ability compared to other state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
婷婷完成签到,获得积分10
1秒前
1秒前
1秒前
youwu完成签到,获得积分10
1秒前
2秒前
Dale完成签到,获得积分10
2秒前
2秒前
斯文败类应助xxz采纳,获得10
2秒前
情怀应助dudu采纳,获得10
3秒前
昔年发布了新的文献求助10
3秒前
3秒前
顾矜应助MM采纳,获得10
3秒前
4秒前
pedslee完成签到,获得积分10
4秒前
dajiaobanana发布了新的文献求助10
4秒前
5秒前
桐桐应助puppynorio采纳,获得10
5秒前
5秒前
Hello应助缓慢的煎蛋采纳,获得10
5秒前
曾无忧发布了新的文献求助10
6秒前
Rondab应助hjx采纳,获得10
6秒前
又又发布了新的文献求助10
6秒前
6秒前
ljh发布了新的文献求助10
6秒前
快乐柴柴发布了新的文献求助10
6秒前
个性元枫应助Ljx4869采纳,获得10
7秒前
独特乘风发布了新的文献求助10
7秒前
CR7应助碧蓝恶天采纳,获得30
7秒前
JamesPei应助英俊梦玉采纳,获得10
7秒前
amy完成签到,获得积分10
7秒前
邵星宇完成签到,获得积分20
8秒前
ljzhhh完成签到,获得积分10
8秒前
Rondab应助培潮大王采纳,获得10
8秒前
康师傅发布了新的文献求助10
8秒前
8秒前
糯米椰发布了新的文献求助10
9秒前
NexusExplorer应助聪明的珊迪采纳,获得10
9秒前
9秒前
heshaofan完成签到,获得积分10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Chalcogen–Nitrogen Chemistry 800
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4025218
求助须知:如何正确求助?哪些是违规求助? 3565055
关于积分的说明 11347987
捐赠科研通 3296132
什么是DOI,文献DOI怎么找? 1815473
邀请新用户注册赠送积分活动 890093
科研通“疑难数据库(出版商)”最低求助积分说明 813266